E/A\lu” Department of Computer Science
(/A Computer Science 6

Friedrich-Alexander-Universitat (Data M anagement)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 3:
Clustering

About this Assignment

In this assignment, your task is to implement the algorithms for K-means and DBSCAN. For
this purpose, you have access to a basic code skeleton, some helper classes, and several test
cases.

Key Data

e Max. Group Size: 3
¢ Max. Points: 30
« Estimated Workload: 3 - 4 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.'

Once that’s done, you have two main options for working on your assignment. You can clone
the repository? to your local machine by navigating to Code — Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code — Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution?. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You'll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

!Each student must join individually. You can join groups while accepting an assignment.
2If you're unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 11


https://github.com/git-guides/

How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 3 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

KDDmUe, SS 2025 — Submission 3:

P 2of 11
Clustering age < o



1

Task 1: K-means

K-means is a simple and widely used clustering algorithm. It partitions a dataset into k clusters
by iteratively assigning each data point to the cluster with the nearest centroid and updating
the centroids based on the mean of the data points in the cluster.

Task 1.1 (3 Points)

The first step of the K-means algorithm is to distribute the data points to the k partitions. This
partition can be done randomly or by using a more sophisticated method. All partitions have
to be non-empty after the initialization and each data point has to be assigned to exactly one
partition.

Open kmeans.py and implement _initialize_partitions, which initializes the partitions for
the K-means algorithm:

__initialize_ partitions

def _initialize_partitions(
self,
points: List[Point]

) 8

Description:

o Initializes the partitions (self.partitions) by assigning each point to a cluster/partition.
All clusters/partitions are non empty after this method is called.

Parameters:

 points (List[Point]): The points to cluster.

Returns:

e None - The method stores the partitions in self.partitions

The method expects a list of Points and does not return anything. The method should put
each point into one of the partitions available at self.partitions. The number of partitions
is given by the variable self .k.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_initialize_partitions.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 3 of 11



1

Task 1.2 (3 Points)

A second important part of the K-means algorithm is to update the centroids of the partitions.
The centroid of a partition is the mean of all points in the partition.

Open kmeans.py and implement _update_centroids, which updates the centroids of the par-
titions:

__update__centroids

‘def _update_centroids (self):

Description:

o Updates the centroids of the partitions and writes the new centroids into self.centroids.
Parameters:

e None

Returns:

e None - The method updates self.centroids

The method does not expect any parameters and does not return anything. The method should
update the self.centroids based on the mean of all points in the partition. The i-th centroid
in self.centroids should refer to the i-th partition in self.partitions.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_update_centroids.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 4 of 11



1

Task 1.3 (5 Points)

The last step of the K-means algorithm is to assign each data point to the cluster with the
nearest centroid.

Open kmeans.py and implement _reassign_points, which assigns each data point to the par-
tition with the nearest centroid:

_ _reassign_ points

‘def _reassign_points(self) -> bool:

Description:

o Reassigns each point to the partition with the closest centroid. Ensures that each
partition is non-empty after reassigning the points, by randomly reassigning a single
point from a random non-empty partition with more than one element into each empty
partition.

Parameters:

e None

Returns:

e bool: True if the reassignment changed the partitions, False otherwise

The method does not expect any parameters and returns a boolean. The method should remove
all points from their previous partition and add them to the partition with the nearest centroid if
there is a closer centroid. If the reassignment changed the partitions, the method should return
True, otherwise False.

If there are empty partitions after the reassignment, the method should randomly reassign a
single point from a random non-empty partition with more than one element into each empty
partition. This is necessary to avoid empty partitions, which would lead to K-means not pro-
ducing k clusters, but k — n clusters (n being the number of empty partitions).

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_reassign_points.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 5 of 11



Task 1.4 (3 Points)

The K-means algorithm is iterative. The algorithm stops if the partitions do not change anymore
or if a maximum number of iterations is reached.

Open kmeans.py and implement fit, which combines the previous steps to implement the
K-means algorithm:

—&3

def fit(
self,
points: List[Point]

) 8

Description:

e Fit the K-Means clustering instance to the given points.
Parameters:

o points (List[Point]): The points to cluster.

Returns:

e None

The method expects a list of Points and does not return anything. The method should imple-
ment the K-means algorithm by calling the methods _initialize_partitions, _update_centroids,
and _reassign_points.

You can test whether your implementation is correct by executing the following command in
the console:

1 | pytest tests/kmeans/test_fit.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 6 of 11



Task 2: DBSCAN

DBSCAN is a density-based clustering algorithm that groups together points that are closely
packed together. It is based on two parameters: ¢ and MinPts.

Task 2.1 (2 Points)

A core part of the DBSCAN algorithm is to find all points that are within a distance of ¢ of a
given point, the so-called e-Neighborhood.

Open dbscan.py and implement _get_neighborhood, which returns all points that are within
a distance of ¢ of a given point:

__get_ neighborhood

def _get_neighborhood(
self,
point: Point,
points: List[Point]
) -> List[Point]:

Description:

o Get the neighborhood of a point.

Parameters:

o point (Point): The point to get the neighborhood of.

o points (List[Point]): The points to consider.
Returns:
e List[Point]: The points in the neighborhood.

The method expects the Point for which the neighborhood should be determined and a list of
all Points that should be considered. The method should return all points that are within a
distance of ¢ of the given point as a list of Points. ¢ is given by the variable self.epsilon.

You can test whether your implementation is correct by executing the following command in
the console:

1 |pytest tests/dbscan/test_get_neighborhood.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 7 of 11



1

Task 2.2 (14 Points)

The function _get_neighborhood can be used to implement the DBSCAN algorithm. The
algorithm can be implemented either iteratively or recursively.

Open dbscan.py and implement fit, which implements the DBSCAN algorithm:

&3

def fit(

self,

points: List[Point]
) -> None:

Description:

o Fit the DBSCAN clustering instance to the given points.

Parameters:

o points (List[Point]): The points to cluster.

Returns:

e None - The method stores the found clusters in self.clusters and the noise points
in self.noise

The method expects a list of Points and does store the found clusters in the variable self.clusters
and the noise points in the variable self .noise.

The method can be implemented either iteratively or recursively. Additional helper methods
can be implemented if necessary, but they will not be tested and therefore award no points.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/dbscan/test_fit.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 8 of 11



Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

Dataset(s)

The most test cases are based on the following data sets:

Small Point Dataset

All test cases starting with the prefix test_with_small_point_dataset are based on the small
dataset of 2D Points known from Exercise Sheet 5 - Task 1/Task 2.

The dataset is structured as follows:

Points:
@ (1,1) (1,4) (2,3) (3,4) (4,3)
(1,2) (2,1) (3,2) (4,1) (4,4)

o = N W ke wu

01 2 3 4 5

Bigger Point Dataset

All test cases starting with the prefix test_with_bigger_ point_dataset are based on a bigger
dataset of one-hundred 2D Points.

The dataset is structured as follows:

Jun
w

Points:

ﬁ @ (-10,-10) (-6,-6) (-2-1) (2,2)  (6-7)
10 (-10,-9) (-6,5) (-2,1)  (2,3)  (6,6)

9 (-10,-7) (-6-3) (-2,2)  (2,5) (6,7)

; (-10,10) (-6,6) (-12) (3-6) (6,9

6 (-9,-10) (-5,-6)  (-1,-1)  (3,-4) (7,-10)

5 (-9-9)  (-5:5) (-1,0) (3,3)  (7-8)

4 (-9,-8)  (-5-4) (-1,1)  (3,4) (7,7)

: (-9-6) (-5-2) (-12) (36) (7.8

) (-9,9)  (-4,:5) (0,-3)  (4-7)  (7,10)

0 (-8-9) (-4,4) (0-1) (4-5)  (8,-10)
-1 (-8-8) (-4:3) (0,00  (4,4)  (879)
*z (-8-7)  (4-1) (0,1)  (45)  (88)
4 (-8-5) (44) (03) (47 (89
5 (-88)  (-3-4) (1-4) (5-8) (9,-10)
-6 (7-8)  (-3:3) (12) (5-6)  (9,9)
-7 7-7)  (-3-2) (L,1)  (55) (9,9
:: (-7-6)  (-30) (1,2)  (55) (9,10
10 (7-4)  (-33) (1,4  (56)  (10-10)
—11 770 (253 (2-5)  (58)  (10,-8)
—12 (-6,-7)  (-2,-2)  (2-3)  (6-9)  (10,10)
_13—11—10—9 —-8-7—-6—-5—-4-3-2—-10 1 2 3 4 5 6 7 8 9 10 11

KDDmUe, SS 2025 — Submission 3: Page 9 of 11

Clustering



Helper Classes

The following helper classes are provided in the classes/ folder to support your implementation.
Each class serves a specific purpose in the clustering algorithms.

Basic Data Structures

Point (classes/point.py)
Represents a single point in 2D space with additional flags for DBSCAN.

o Attributes:
— x (float) - The x-coordinate of the point
— y (float) - The y-coordinate of the point

— visited (bool) - Flag for DBSCAN to indicate if the point has been visited (default:
False)

— clustered (bool) - Flag for DBSCAN to indicate if the point is part of a cluster
(default: False)

e Key Methods:
— get_x() - Returns the x-coordinate
— get_y() - Returns the y-coordinate
— get_distance(other) - Calculates Euclidean distance to another point
— is_visited() / set_visited(visited) - Check/set visited flag
— is_clustered() / set_clustered(clustered) - Check/set clustered flag
e Usage: Create points like Point (1.0, 2.0) or Point (3.5, 4.2, visited=True)

o« Example:

pointil Point (1.0, 2.0)

point2 Point (4.0, 6.0)

distance = pointl.get_distance(point2) # Calculate distance
pointl.set_visited(True) # Mark as visited for DBSCAN
print (£"Point: {pointll}") # Output: (1.0, 2.0)

Tk W N~

Cluster (classes/cluster.py)

Represents a cluster (or partition) of points. Can be used for both K-means partitions and
DBSCAN clusters.

o Attributes:
— points (List[Point]) - List of points in the cluster
e Key Methods:
— add_point(point) - Add a point to the cluster
— remove_point(point) - Remove a point from the cluster
— get_points() - Returns all points as a list

KDDmUe, SS 2025 — Submission 3: Page 10 of 11
Clustering




— __contains__(point) - Check if point is in cluster (enables point in cluster)
— __len__() - Get number of points in cluster (enables len(cluster))
— __iter__Q - Iterate over points (enables for point in cluster)

Usage: Essential for storing and managing groups of points in both algorithms

Example:

cluster = Cluster ()
cluster.add_point (Point (1.0, 2.0))
cluster.add_point (Point (3.0, 4.0))

print (f"Clustersize: {len(cluster)}") # Output: 2
for point in cluster:
print (f"Point:{pointl}")

if Point (1.0, 2.0) in cluster:
print ("Point, found,in,cluster")

O O 000U WN

—_

Practical Tips

o Distance Calculation:
Use pointl.get_distance(point2) for Euclidean distance between points

« DBSCAN Flags:
The visited and clustered flags in Point are specifically designed for DBSCAN imple-
mentation

e K-means Partitions:
Use Cluster objects to represent the k partitions in K-means

« DBSCAN Clusters:
Use Cluster objects to store the final clusters found by DBSCAN

e Iteration:
Both Point and Cluster classes support Python’s standard iteration patterns

e Point Equality:
Points are considered equal if they have the same x and y coordinates

e Debugging:
Both classes have __str__ methods for easy printing and debugging

e Neighborhood Search:
For DBSCAN, use get_distance() to find points within epsilon distance

Page 11 of 11

KDDmUe, SS 2025 — Submission 3:
Clustering



