
Department of Computer Science
Computer Science 6
(Data Management)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 2:
Classification

About this Assignment

In this assignment, your task is to implement the algorithms for Decision Tree Induction and
Naïve Bayes Classification. For this purpose, you have access to a basic code skeleton, some
helper classes, and several test cases.

Key Data

• Max. Group Size: 3

• Max. Points: 50

• Estimated Workload: 5 - 7.5 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.1

Once that’s done, you have two main options for working on your assignment. You can clone
the repository2 to your local machine by navigating to Code → Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code → Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution2. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You’ll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

1Each student must join individually. You can join groups while accepting an assignment.
2If you’re unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 26

https://github.com/git-guides/

How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 2 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

KDDmUe, SS 2025 – Submission 2:
Classification

Page 2 of 26

Task 1: Decision Tree Induction

Decision tree induction is a commonly used method for classifying datasets. While the funda-
mental approach to decision tree induction is not very variable, using different attribute selection
methods can produce very different decision trees.

Important Note: Categorical and Continuous Attributes

In decision tree induction, a distinction is made between categorical and continuous at-
tributes. To simplify the distinction, you can assume all attributes containing strings to be
categorical, while numerical attributes are considered continuous. The target attributes are
always categorical.

Task 1.1: Attribute Selection Methods

Since attribute selection methods play a crucial role in decision tree induction, it is reasonable
to implement these first. In this submission, we limit ourselves to two methods: Information
Gain and Gini Index.

Task 1.1.1: Information Gain

The Information Gain is a measure of the difference in entropy before and after splitting a
dataset based on an attribute.

Task 1.1.1.1 (1 Points)

At the beginning of Apriori, the identification of 1-itemsets is paramount.

Open information_gain.py and implement the calculate_entropy, which calculates the en-
tropy of a dataset with regard to a target attribute:

calculate_entropy
def calculate_entropy (dataset : pd.DataFrame , target_attribute : str) -> float :

Description:
• Calculate the entropy for a given target attribute in a dataset.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the entropy for.

• target_attribute (str): The target attribute used as the class label.
Returns:
• float: The calculated entropy (= expected information).

Make sure that you expect a pandas DataFrame as the dataset and a string as the target
attribute. Make sure to return the calculated entropy as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / information_gain / test_calculate_entropy .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 3 of 26

Task 1.1.1.2 (1 Points)

The next step is to calculate the entropy after the split.

Implement calculate_information_partitioned, which calculates the entropy of a dataset
after splitting it based on a specific attribute:

calculate_information_partitioned
def calculate_information_partitioned (

dataset : pd.DataFrame ,
target_attribute : str ,
partition_attribute : str ,
split_value : int | float = None ,

) -> float :

Description:
• Calculate the information for a given target attribute in a dataset if the dataset is

partitioned by a given attribute.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the information for.

• target_attribute (str): The target attribute used as the class label.

• partition_attribute (str): The attribute that is used to partition the dataset.

• split_value (int|float), default None: The value to split the partition attribute on. If
set to None, the function will calculate the information for a discrete-valued partition
attribute. If set to a value, the function will calculate the information for a continuous-
valued partition attribute.

Returns:
• float: The calculated entropy.

Like calculate_entropy, calculate_information_partitioned also requires a dataset and
a target attribute. Additionally, the function requires a string that specifies which attribute is
used for partitioning. If the partitioning attribute is a continuous attribute, an optional numeric
value can be provided, indicating where the partitioning into two partitions should occur.

The function should return the calculated entropy as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / information_gain / test_calculate_information_partitioned .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 4 of 26

Task 1.1.1.3 (1 Points)

Both entropies can be used to calculate the information gain.

Implement calculate_information_gain, which calculates the information gain for a dataset
based on a specific attribute:

calculate_information_gain
def calculate_information_gain (

dataset : pd.DataFrame ,
target_attribute : str ,
partition_attribute : str ,
split_value : int | float = None ,

) -> float :

Description:
• Calculate the information gain for a given target attribute in a dataset if the dataset

is partitioned by a given attribute.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the information gain for.

• target_attribute (str): The target attribute used as the class label.

• partition_attribute (str): The attribute that is used to partition the dataset.

• split_value (int|float), default None: The value to split the partition attribute on.
If set to None, the function will calculate the information gain for a discrete-valued
partition attribute. If set to a value, the function will calculate the information gain
for a continuous-valued partition attribute.

Returns:
• float: The calculated information gain.

The function expects a dataset, a target attribute, and a partitioning attribute. If the parti-
tioning attribute is continuous, a split value can be provided. The function should return the
calculated information gain as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / information_gain / test_calculate_information_gain .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 5 of 26

Task 1.1.2: Gini Index

The Gini Index is another attribute selection method. It measures the impurity of a dataset.

Task 1.1.2.1 (1 Points)

To calculate the Gini Index, the impurity of the dataset has to be computed.

Open gini_index.py. Implement calculate_impurity, which calculates the impurity of a
dataset with regard to a target attribute:

calculate_impurity
def calculate_impurity (dataset : pd.DataFrame , target_attribute : str) -> float :

Description:
• Calculate the impurity for a given target attribute in a dataset.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the impurity for.

• target_attribute (str): The target attribute used as the class label.
Returns:
• float: The calculated impurity.

The function expects a dataset and a target attribute. Make sure to return the calculated
impurity as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / gini_index / test_calculate_impurity .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 6 of 26

Task 1.1.2.2 (1 Points)

The next step is to calculate the impurity after the split.

Implement calculate_impurity_partitioned, which calculates the impurity of a dataset after
splitting it based on a specific attribute:

calculate_impurity_partitioned
def calculate_impurity_partitioned (

dataset : pd.DataFrame ,
target_attribute : str ,
partition_attribute : str ,
split : int | float | Set[str],

) -> float :

Description:
• Calculate the impurity for a given target attribute in a dataset if the dataset is parti-

tioned by a given attribute and split.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the impurity for.

• target_attribute (str): The target attribute used as the class label.

• partition_attribute (str): The attribute that is used to partition the dataset.

• split (int|float|Set[str]): The split used to partition the partition attribute. If the
partition attribute is discrete-valued, the split is a set of strings (Set[str]). If the
partition attribute is continuous-valued, the split is a single value (int or float).

Returns:
• float: The calculated impurity.

The function expects a dataset, a target attribute, and a partitioning attribute. If the partition-
ing attribute is continuous, a single split value can be provided. If the partitioning attribute is
discrete, a set of strings can be provided. The function should return the calculated impurity
as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / gini_index / test_calculate_impurity_partitioned .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 7 of 26

Task 1.1.2.3 (1 Points)

Both impurities can be used to calculate the gini index.

Implement calculate_gini_index, which calculates the gini index for a dataset based on a
specific attribute:

calculate_gini_index
def calculate_gini_index (

dataset : pd.DataFrame ,
target_attribute : str ,
partition_attribute : str ,
split : int | float | Set[str],

) -> float :

Description:
• Calculate the Gini index (= reduction of impurity) for a given target attribute in a

dataset if the dataset is partitioned by a given attribute and split.
Parameters:
• dataset (pd.DataFrame): The dataset to calculate the Gini index for.

• target_attribute (str): The target attribute used as the class label.

• partition_attribute (str): The attribute that is used to partition the dataset.

• split (int|float|Set[str]): The split used to partition the partition attribute. If the
partition attribute is discrete-valued, the split is a set of strings (Set[str]). If the
partition attribute is continuous-valued, the split is a single value (int or float).

Returns:
• float: The calculated Gini index.

The function expects a dataset, a target attribute, and a partitioning attribute. If the partition-
ing attribute is continuous, a single split value can be provided. If the partitioning attribute is
discrete, a set of strings can be provided. The function should return the calculated gini index
as a float.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / gini_index / test_calculate_gini_index .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 8 of 26

Task 1.2: Training

After implementing the attribute selection methods, the next step is to implement the decision
tree induction itself.

Task 1.2.1 (3 Points)

One important step in decision tree induction is to determine the best attribute to split the
dataset on. For this purpose, the Information Gain or the Gini Index have to be calculated for
each attribute. Since there might be multiple splits for the same attribute and therefore multiple
information gains or gini indices, it is best to implement a separate function for this purpose.

Open decision_tree.py and implement _calculate_information_gain, which calculates the
best possible information gain for a specific attribute:

_calculate_information_gain
def _calculate_information_gain (

self ,
data: pd.DataFrame ,
attribute : str

) -> Tuple [float , List[DecisionTreeDecisionOutcome]]:

Description:
• Calculate the (best) information gain for a given attribute in a dataset.
Parameters:
• data (pd.DataFrame): The dataset to calculate the information gain for.

• attribute (str): The attribute to calculate the information gain for.
Returns:
• float: The calculated information gain.

• List[DecisionTreeDecisionOutcome]: The outcomes the best split of this attribute
has.

The function expects the dataset and the attribute for which the information gain is to be
calculated. The target classification attribute is already set in self.target_attribute when
the function is called.

The function should return the calculated information gain as a float and a list of outcomes.
The DecisionTreeDecisionOutcome objects represent the outcomes of the best split of the
attribute (e.g. if the attribute is Age, the outcomes might be ≤ 25 and > 25).

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_calculate_information_gain .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 9 of 26

Task 1.2.2 (3 Points)

The same has to be done for the Gini Index.

Implement _calculate_gini_index, which calculates the best possible gini index for a specific
attribute:

_calculate_gini_index
def _calculate_gini_index (

self ,
data: pd.DataFrame ,
attribute : str

) -> Tuple [float , List[DecisionTreeDecisionOutcome]]:

Description:
• Calculate the (best) gini index for a given attribute in a dataset.
Parameters:
• data (pd.DataFrame): The dataset to calculate the gini index for.

• attribute (str): The attribute to calculate the gini index for.
Returns:
• float: The calculated gini index (reduction of impurity).

• List[DecisionTreeDecisionOutcome]: The outcomes the best split of this attribute
has.

The function expects the dataset and the attribute for which the gini index is to be calculated.
The target classification attribute is already set in self.target_attribute when the function
is called.

The function should return the calculated gini index as a float and a list of outcomes. The
DecisionTreeDecisionOutcome objects represent the outcomes of the best split of the attribute
(e.g. if the attribute is Participation, the outcomes might be {High, Medium} and {Low}).

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_calculate_gini_index .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 10 of 26

Task 1.2.3 (6 Points)

These functions can now be used to find the best attribute to split the dataset on.

Implement _find_best_split, which finds the best split for a given dataset:

_find_best_split
def _find_best_split (

self ,
data: pd.DataFrame ,
attribute_list : List[str],
attribute_selection_method : str ,

) -> Tuple [str , List[DecisionTreeDecisionOutcome]]:

Description:
• Find the best split for a given dataset and attribute list. Finding the best split includes

finding the best attribute to split on and also (depending on the attribute selection
method) the best set of outcomes to split on this attribute.

Parameters:
• data (pd.DataFrame): The dataset to find the best splitting attribute for.

• attribute_list (List[str]): The list of attributes to consider.

• attribute_selection_method (str): The attribute selection method to use.
Returns:
• str: The attribute to split on.

• List[DecisionTreeDecisionOutcome]: The outcomes a split on this attribute should
have.

The function expects the dataset, a list of all attributes that might become the splitting at-
tribute, and the attribute selection method. The attribute selection method can be either
information_gain or gini_index. The function should return the best attribute to split on
and a list of DecisionTreeDecisionOutcomes.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_find_best_split .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 11 of 26

Task 1.2.4 (6 Points)

The next step is to implement the recursive creation of the decision tree.

Implement _build_tree, which recursively builds the decision tree:

_build_tree
def _build_tree (

self ,
data: pd.DataFrame ,
attribute_list : List[str],
attribute_selection_method : str ,

) -> DecisionTreeNode :

Description:
• Recursively build the decision tree.
Parameters:
• data (pd.DataFrame): The (partial) dataset to build the decision tree with.

• attribute_list (List[str]): The list of attributes to consider.

• attribute_selection_method (str): The attribute selection method to use.
Returns:
• DecisionTreeNode: The root node of the decision tree.

The function expects the dataset, a list of all attributes that might become the splitting at-
tribute, and the attribute selection method. The attribute selection method can be either
information_gain or gini_index. The function should return the DecisionTreeNode that
represents the root node of the part of the decision tree that was built within the call of the
function.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_build_tree .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 12 of 26

Task 1.2.5 (4 Points)

The last step is to implement the method to train the decision tree on a specific dataset.

Implement fit, which fits the decision tree to the dataset:

fit
def fit(

self ,
dataset : pd.DataFrame ,
target_attribute : str ,
attribute_selection_method : str ,

):

Description:
• Fit decision tree on a given dataset and target attribute, using a specified attribute

selection method.
Parameters:
• dataset (pd.DataFrame): The dataset to fit the decision tree on.

• target_attribute (str): The target attribute to predict.

• attribute_selection_method (str): The attribute selection method to use.
Returns:
• None - The method saves the trained model in self.target_attribute and

self.tree.

The function expects the dataset, the target attribute, and the attribute selection method that
should be used to build the decision tree. The function doesn’t return anything, but sets both
members self.target_attribute and self.tree. The former is the target attribute, and the
latter is the root node of the decision tree.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_fit .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 13 of 26

Task 1.3: Prediction

With a trained decision tree, the classes of new tuples can be predicted.

Task 1.3.1 (2 Points)

The first step is to implement the method to predict the class of a single tuple.

Within decision_tree.py implement _predict_tuple, which predicts the class of a single
tuple:

_predict_tuple
def _predict_tuple (

self ,
tuple : pd.Series ,
node: DecisionTreeNode

) -> str | int | float :

Description:
• Predict the target attribute for a given row in the dataset. This is a recursive function

that traverses the decision tree until a leaf node is reached.
Parameters:
• tuple (pd.Series): The row to predict the target attribute for.

• node (DecisionTreeNode): The current node in the decision tree.
Returns:
• str | int | float: The predicted class label.

The function expects a single tuple as a pandas Series and the current node of the decision tree.
The function should return the predicted class label.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_predict_tuple .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 14 of 26

Task 1.3.2 (2 Points)

The last step is to implement the method to predict the classes of a complete dataset.

Implement predict, which predicts the classes of a dataset:

predict
def predict (self , dataset : pd. DataFrame) -> List[str | int | float]:

Description:
• Predict the target attribute for a given dataset.
Parameters:
• dataset (pd.DataFrame): The dataset to predict the target attribute for.
Returns:
• List[str | int | float]: A list of predicted class labels.

The function expects a dataset and should return a list of predicted class labels.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / decision_tree / test_predict .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 15 of 26

Task 2: Naïve Bayes Classification

Naïve Bayes is a simple classification algorithm based on Bayes’ Theorem. It is called "naïve"
because it assumes that the attributes are conditionally independent given the class label.

Important Note: Categorical and Continuous Attributes

In naïve Bayes classification, a distinction is made between categorical and continuous at-
tributes. To simplify the distinction, you can assume all attributes containing strings to be
categorical, while numerical attributes are considered continuous. The target attributes are
always categorical.

Task 2.1: Training

To be able to classify new tuples, the algorithm has to be trained on a dataset.

Task 2.1.1 (6 Points)

For the training, the algorithm has to calculate the prior probabilities for each of the classes.

Open naive_bayes.py and implement _calculate_prior_probabilities, which calculates
the prior probabilities for each class:

_calculate_prior_probabilities
def _calculate_prior_probabilities (

self ,
dataset : pd. DataFrame

) -> NaiveBayesPriorProbabilities :

Description:
• Calculate the prior probability for each class. (The target attribute has to be set before

calling this method.)
Parameters:
• dataset (pd.DataFrame): The training dataset.
Returns:
• NaiveBayesPriorProbabilities: The prior probabilities for each class.

The function expects a dataset and should return an instance of NaiveBayesPriorProbabilities.
This object contains the prior probabilities for each class. The target attribute is already set in
self.target_attribute when the function is called.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / naive_bayes / test_calculate_prior_probabilities .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 16 of 26

Task 2.1.2 (5 Points)

The next step is to calculate the likelihoods for each attribute given the class label.

Implement _calculate_likelihoods, which calculates the likelihoods for each attribute given
the class label:

_calculate_likelihoods
def _calculate_likelihoods (self , dataset : pd. DataFrame) -> NaiveBayesLikelihoods :

Description:
• Calculate the likelihoods for each attribute and class. (The target attribute has to be

set before calling this method.)
Parameters:
• dataset (pd.DataFrame): The training dataset.
Returns:
• NaiveBayesLikelihoods: The likelihoods for each attribute and class.

The function expects a dataset and should return an instance of NaiveBayesLikelihoods. This
object contains the likelihoods for each attribute given the class label. The target attribute is
already set in self.target_attribute when the function is called.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / naive_bayes / test_calculate_likelihoods .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 17 of 26

Task 2.1.3 (3 Points)

The last step is to implement the method to train the naïve Bayes classifier on a specific
dataset.

Implement fit, which fits the naïve Bayes classifier to the dataset:

fit
def fit(self , dataset : pd.DataFrame , target_attribute : str):

Description:
• Fit the Naive Bayes classifier to the training dataset. Sets the target attribute and the

class labels. Calculates the prior probabilities, and the likelihoods.
Parameters:
• dataset (pd.DataFrame): The training dataset.

• target_attribute (str): The target attribute to predict.
Returns:
• None - The method saves the trained model in self.target_attribute,

self.class_labels, self.prior_probabilities, and self.likelihoods.

The function expects the dataset and the target attribute. The function doesn’t return anything,
but sets the members self.target_attribute, self.class_labels, self.prior_probabilities,
and self.likelihoods. The former is the target attribute, the second is a list of all possible
class labels, the third is an instance of NaiveBayesPriorProbabilities, and the last is an
instance of NaiveBayesLikelihoods.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / naive_bayes / test_fit .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 18 of 26

Task 2.2: Prediction

With a trained naïve Bayes classifier, the classes of new tuples can be predicted.

Task 2.2.1 (2 Points)

The first step is to implement the method to predict the class of a single tuple.

Within naive_bayes.py implement _predict_tuple, which predicts the class of a single tu-
ple:

_predict_tuple
def _predict_tuple (self , tuple : pd. Series) -> str | int | float :

Description:
• Predict the target attribute for a given row in the dataset.
Parameters:
• tuple (pd.Series): The row in the dataset to predict the target attribute for.
Returns:
• str | int | float: The predicted class label.

The function expects a single tuple as a pandas Series. The function should return the predicted
class label.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / naive_bayes / test_predict_tuple .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 19 of 26

Task 2.2.2 (2 Points)

The last step is to implement the method to predict the classes of a complete dataset.

Implement predict, which predicts the classes of a dataset:

predict
def predict (self , dataset : pd. DataFrame) -> List[str | int | float]:

Description:
• Predict the target attribute for a given dataset.
Parameters:
• dataset (pd.DataFrame): The dataset to predict the target attribute for.
Returns:
• List[str | int | float]: A list of predicted class labels.

The function expects a dataset and should return a list of predicted class labels.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests / naive_bayes / test_predict .py

KDDmUe, SS 2025 – Submission 2:
Classification

Page 20 of 26

Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

Dataset(s)

The most test cases are based on the following data sets:

Small Student Dataset

All test cases starting with the prefix test_with_small_student_dataset are based on the
small student dataset known from Exercise Sheet 4 - Task 1.

The dataset is structured as follows:

Age Major Participation Passed
23 CS High Yes
23 DS Low No
26 DS High Yes
24 DS Medium Yes
26 DS Medium No
26 DS Low No

Table 1: Small Student Dataset

Small Submission Dataset

All test cases starting with the prefix test_with_small_student_dataset are based on the
small submission dataset known from Exercise Sheet 4 - Task 2.

The dataset is structured as follows:

Topic Knowledge Hours Passed
Classification High 1,0 No

Clustering Low 4,0 No
Frequent Patterns High 5,0 Yes

Clustering Medium 5,0 Yes
Frequent Patterns High 2,0 No
Frequent Patterns Medium 3,0 Yes

Classification Low 6,0 Yes
Clustering Low 5,0 Yes
Clustering High 3,0 Yes

Classification Medium 4,0 Yes

Table 2: Small Submission Dataset

KDDmUe, SS 2025 – Submission 2:
Classification

Page 21 of 26

Helper Classes

The following helper classes are provided in the classes/ folder to support your implementation.
Each class serves a specific purpose in the classification algorithms.

Decision Tree Data Structures

DecisionTreeNode (classes/decision_tree_node.py)

Abstract superclass for all decision tree node types.

• Usage: Base class for DecisionTreeInternalNode and DecisionTreeLeafNode

• Note: You typically don’t create instances of this class directly

DecisionTreeInternalNode (classes/decision_tree_internal_node.py)

Represents an internal node in a decision tree that contains a decision attribute and branches.

• Attributes:

– attribute_label (str) - The attribute this node makes decisions on

– branches (List[DecisionTreeBranch]) - The branches starting from this node

• Key Methods:

– get_label() - Returns the attribute label

– get_branches() - Returns list of branches

• Usage: Created when building decision tree for non-leaf nodes

• Example:
1 internal_node = DecisionTreeInternalNode ("Age", branches_list)
2 attribute = internal_node . get_label () # Returns "Age "

DecisionTreeLeafNode (classes/decision_tree_leaf_node.py)

Represents a leaf node in a decision tree that contains a final class prediction.

• Attributes:

– class_label (str|int|float) - The predicted class for this leaf

• Key Methods:

– get_label() - Returns the class label

• Usage: Created when building decision tree for terminal nodes

• Example:
1 leaf_node = DecisionTreeLeafNode ("Yes")
2 prediction = leaf_node . get_label () # Returns " Yes "

KDDmUe, SS 2025 – Submission 2:
Classification

Page 22 of 26

DecisionTreeBranch (classes/decision_tree_branch.py)

Represents a branch connecting nodes in a decision tree.

• Attributes:

– label (DecisionTreeDecisionOutcome) - The condition for this branch

– branch_node (DecisionTreeNode) - The node this branch leads to

• Key Methods:

– get_label() - Returns the branch condition

– get_branch_node() - Returns the destination node

– value_matches(value) - Checks if a value satisfies the branch condition

• Usage: Connects internal nodes to their child nodes with conditions

• Example:
1 outcome = DecisionTreeDecisionOutcomeAbove (25)
2 branch = DecisionTreeBranch (outcome , child_node)
3 if branch . value_matches (30): # True , since 30 > 25
4 next_node = branch . get_branch_node ()

Decision Outcome Classes

DecisionTreeDecisionOutcome (classes/decision_tree_decision_outcome.py)

Abstract base class for all decision outcomes in decision trees.

• Key Methods:

– value_matches(value) - Checks if a value matches this outcome

• Usage: Base class for specific outcome types

DecisionTreeDecisionOutcomeEquals (classes/decision_tree_decision_outcome_equals.py)

Represents an outcome where values must exactly equal a specific value.

• Attributes:

– value (str|int|float) - The exact value required for this outcome

• Usage: Used for categorical attributes or exact numeric matches

• Example:
1 outcome = DecisionTreeDecisionOutcomeEquals ("High")
2 print (outcome . value_matches ("High")) # True
3 print (outcome . value_matches (" Medium ")) # False

KDDmUe, SS 2025 – Submission 2:
Classification

Page 23 of 26

DecisionTreeDecisionOutcomeAbove (classes/decision_tree_decision_outcome_above.py)

Represents an outcome where values must be above a threshold.

• Attributes:

– value (str|int|float) - The threshold value

• Usage: Used for continuous attributes with upper splits

• Example:
1 outcome = DecisionTreeDecisionOutcomeAbove (25)
2 print (outcome . value_matches (30)) # True , since 30 > 25
3 print (outcome . value_matches (20)) # False , since 20 <= 25
4 print (str(outcome)) # " >25"

DecisionTreeDecisionOutcomeBelowEqual
(classes/decision_tree_decision_outcome_below_equal.py)

Represents an outcome where values must be below or equal to a threshold.

• Attributes:

– value (str|int|float) - The threshold value

• Usage: Used for continuous attributes with lower splits

• Example:
1 outcome = DecisionTreeDecisionOutcomeBelowEqual (25)
2 print (outcome . value_matches (20)) # True , since 20 <= 25
3 print (outcome . value_matches (30)) # False , since 30 > 25
4 print (str(outcome)) # " <=25"

DecisionTreeDecisionOutcomeInList (classes/decision_tree_decision_outcome_in_list.py)

Represents an outcome where values must be in a specific list of allowed values.

• Attributes:

– value (List[str|int|float]) - List of allowed values for this outcome

• Usage: Used for categorical attributes with multiple valid values

• Example:
1 outcome = DecisionTreeDecisionOutcomeInList (["High", " Medium "])
2 print (outcome . value_matches ("High")) # True
3 print (outcome . value_matches (" Medium ")) # True
4 print (outcome . value_matches ("Low")) # False
5 print (str(outcome)) # "{ High , Medium }"

KDDmUe, SS 2025 – Submission 2:
Classification

Page 24 of 26

Naïve Bayes Data Structures

NaiveBayesPriorProbabilities (classes/naive_bayes_prior_probabilities.py)

Stores prior probabilities for each class in a Naïve Bayes classifier.

• Attributes:

– prior_probabilities (dict) - Dictionary mapping class labels to probabilities

• Key Methods:

– add_prior_probability(class_label, probability) - Adds a prior probability

– get_prior_probability(class_label) - Retrieves a prior probability

• Usage: Stores P(Class) for each class label

• Example:
1 priors = NaiveBayesPriorProbabilities ()
2 priors . add_prior_probability ("Yes", 0.6)
3 priors . add_prior_probability ("No", 0.4)
4 prob_yes = priors . get_prior_probability ("Yes") # Returns 0.6

NaiveBayesLikelihoods (classes/naive_bayes_likelihoods.py)

Stores likelihoods for attributes given class labels in a Naïve Bayes classifier.

• Attributes:

– likelihoods (dict) - Nested dictionary storing likelihood information

• Key Methods:

– add_categorical_likelihood(attribute, value, class_label, likelihood) -
Adds likelihood for categorical attributes

– add_continuous_likelihood(attribute, class_label, mean, std) - Adds pa-
rameters for continuous attributes

– get_likelihood(attribute, value, class_label) - Retrieves likelihood for given
parameters

• Usage: Stores P(Attribute|Class) for both categorical and continuous attributes

• Example:
1 likelihoods = NaiveBayesLikelihoods ()
2
3 # For categorical attribute
4 likelihoods . add_categorical_likelihood (" Major ", "CS", "Yes", 0.8)
5
6 # For continuous attribute (stores mean and std for Gaussian)
7 likelihoods . add_continuous_likelihood ("Age", "Yes", 24.5 , 2.1)
8
9 # Retrieve likelihoods

10 prob_cs_given_yes = likelihoods . get_likelihood (" Major ", "CS", "Yes") # 0.8
11 prob_age_given_yes = likelihoods . get_likelihood ("Age", 25.0 , "Yes") #

Calculated using Gaussian

KDDmUe, SS 2025 – Submission 2:
Classification

Page 25 of 26

Practical Tips

• Decision Tree Construction:
Use DecisionTreeInternalNode for decision points and DecisionTreeLeafNode for final pre-
dictions

• Outcome Matching:
Different outcome types handle different split conditions - choose the appropriate type
based on your attribute and split

• Type Hints:
Pay attention to the expected types in method signatures - many methods accept str|int|float
for flexibility

• Error Handling:
The classes include appropriate error checking and warnings for common mistakes

• String Representations:
Most classes have useful __str__ methods for debugging and visualization

• Decision Tree Traversal:
Use the value_matches() method on branches to determine which path to follow during
prediction

KDDmUe, SS 2025 – Submission 2:
Classification

Page 26 of 26

