
Department of Computer Science
Computer Science 6
(Data Management)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 1:
Frequent Patterns

About this Assignment

Throughout the course of this assignment, you will independently implement the two methods,
Apriori (Task 1) and FP-growth (Task 2). For this purpose, a basic code skeleton, several helper
classes, and some test cases are provided to you.

Key Data

• Max. Group Size: 3

• Max. Points: 40

• Estimated Workload: 4 - 6 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.1

Once that’s done, you have two main options for working on your assignment. You can clone
the repository2 to your local machine by navigating to Code → Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code → Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution2. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You’ll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

1Each student must join individually. You can join groups while accepting an assignment.
2If you’re unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 21

https://github.com/git-guides/


How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 1 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 2 of 21



Task 1: Apriori

Apriori is a classic algorithm for frequent itemset mining over transactional databases. It pro-
ceeds by identifying the frequent individual items in the database and extending them to larger
and larger itemsets as long as those itemsets appear sufficiently often in the database.

Task 1.1 (2 Points)

At the beginning of Apriori, the identification of 1-itemsets is paramount.

Open apriori.py in your repository and implement the _generate_one_itemsets, which gen-
erates all 1-itemsets for a given dataset:

_generate_one_itemsets
def _generate_one_itemsets(

self ,
dataset: Dataset

) -> Set[Itemset ]:

Description:
• Generate all 1-itemsets for the given dataset.
Parameters:
• dataset (Dataset): The dataset for which the 1-itemsets should be generated.
Returns:
• Set[Itemset]: A set containing all 1-itemsets that are contained in the dataset.

Make sure that you expect a Dataset and return a Set[Itemset]3.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_generate_one_itemsets.py

3Hint: Itemset and Database are helper classes that can be found in the classes/ folder.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 3 of 21



Task 1.2 (2 Points)

After the 1-itemsets have been identified, the next step is to count the occurrences of these
itemsets in the dataset.

Complete the function _count_occurrences_of_itemsets, which counts the occurrences of all
given itemsets in the dataset:

_count_occurrences_of_itemsets
def _count_occurrences_of_itemsets(

self ,
dataset: Dataset ,
itemsets: Set[Itemset]

) -> ItemsetsWithOccurrenceCounts:

Description:
• Count the occurrences of the given itemsets in the dataset.
Parameters:
• dataset (Dataset): The dataset for which the itemset occurrences should be counted.

• itemsets (Set[Itemset]): The itemsets for which the occurrences should be counted.
The itemsets do not need to be present in the dataset.

Returns:
• ItemsetsWithOccurrenceCounts: A dictionary containing the itemsets as keys and

their occurrence counts as values.

Expect that the input consists of a Dataset and a Set[Itemset]. The method should return
an instance of ItemsetsWithOccurrenceCounts.

Also be aware that the method should be able to count the occurrences of itemsets with any
length, not just 1-itemsets.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_count_occurrences_of_itemsets.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 4 of 21



Task 1.3 (2 Points)

After counting occurrences, it is necessary in Apriori to prune all itemsets falling below the
minimum support threshold.

Complete the function _prune_itemsets_below_min_support, which prunes all itemsets that
do not meet the minimum support threshold:

_prune_itemsets_below_min_support
def _prune_itemsets_below_min_support(

self ,
itemsets_with_occurrence_counts: ItemsetsWithOccurrenceCounts

) -> Set[Itemset ]:

Description:
• Prune itemsets that are below the minimum support threshold.
Parameters:
• itemsets_with_occurrence_counts (ItemsetsWithOccurrenceCounts): A dictionary

containing the itemsets as keys and their occurrence counts as values.
Returns:
• Set[Itemset]: A set containing all itemsets that are considered frequent.

The input consists of an ItemsetsWithOccurrenceCounts. The (absolute) minimum support is
a member variable of the Apriori object and can therefore be accessed via self.min_support.
You have to return a Set[Itemset].

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_prune_itemsets_below_min_support.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 5 of 21



Task 1.4 (5 Points)

The last missing step in the Apriori algorithm is to generate the candidate itemsets for the next
iteration.

Complete the function _generate_candidate_itemsets, which generates the candidate item-
sets for the next iteration:

_generate_candidate_itemsets
def _generate_candidate_itemsets(

self ,
frequent_itemsets: Set[Itemset]

) -> Set[Itemset ]:

Description:
• Generate length-k+1 candidate itemsets based on the given frequent itemsets. k is the

length of the longest frequent itemset.
Parameters:
• frequent_itemsets (Set[Itemset]): A set containing all frequent itemsets.
Returns:
• Set[Itemset]: A set containing all length-k+1 candidate itemsets.

The input consists of a Set[Itemset] containing all frequent itemsets. The method should
return a Set[Itemset] containing all candidate itemsets for the next iteration.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_generate_candidate_itemsets.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 6 of 21



Task 1.5 (5 Points)

All previous steps can be combined into a single algorithm: Apriori.

Complete the function fit, which implements the Apriori algorithm:

fit
def fit(

self ,
dataset: Dataset

):

Description:
• Use the Apriori algorithm to find all frequent itemsets in the given dataset. Saves the

frequent itemsets in the frequent_itemsets attribute.
Parameters:
• dataset (Dataset): The dataset to which the Apriori algorithm should be fitted.
Returns:
• None - The method saves the frequent itemsets in self.frequent_itemsets

The input consists of a Dataset. The method should not return anything but save the frequent
itemsets in the self.frequent_itemsets attribute of the Apriori object.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_fit.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 7 of 21



Task 2: FP-growth

While Apriori represents a very simple approach to mining frequent itemsets, there are alterna-
tive methods available. An interesting method is FP-growth, which necessitates only two passes
on the original dataset. This is achieved through the utilization of the so-called FP-trees.

Task 2.1 (3 Points)

The first step in FP-growth is to find all frequent 1-itemsets. At the same time, it is beneficial
not to immediately discard the occurrence counts of the frequent 1-itemsets.

In fpgrowth.py implement _generate_frequent_one_itemsets_with_occurrence_counts,
which generates all 1-itemsets together with their occurrence counts for a given dataset:

_generate_frequent_one_itemsets_with_occurrence_counts
def _generate_frequent_one_itemsets_with_occurrence_counts(

self ,
dataset: Dataset

) -> ItemsetsWithOccurrenceCounts:

Description:
• Generate all frequent 1-itemsets for the given dataset.
Parameters:
• dataset (Dataset): The dataset for which the frequent 1-itemsets should be generated.
Returns:
• ItemsetsWithOccurrenceCounts: A dictionary containing the frequent 1-itemsets as

keys and their occurrence counts as values.

Expect a Dataset as input and return an ItemsetsWithOccurrenceCounts. Remember that
you did do a similar task in Apriori.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_generate_frequent_one_itemsets_with_occurrence_counts.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 8 of 21



Task 2.2 (2 Points)

After identifying the frequent 1-itemsets, the f-list can be generated. This is where the occurrence
counts of the frequent 1-itemsets come into play.

Complete _generate_f_list:

_generate_f_list
def _generate_f_list(

self ,
frequent_one_itemsets: ItemsetsWithOccurrenceCounts

) -> List[Itemset ]:

Description:
• Generate the f-list for the given frequent 1-itemsets.
Parameters:
• frequent_one_itemsets (ItemsetsWithOccurrenceCounts): The frequent 1-itemsets

with their occurrence counts for which the F-list should be generated.
Returns:
• List[Itemset]: A f-list containing the frequent 1-itemsets sorted by decreasing oc-

currence count.

The input consists of an ItemsetsWithOccurrenceCounts. The return value should be a
List[Itemset] containing the frequent 1-itemsets sorted by decreasing occurrence count

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_generate_f_list.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 9 of 21



Task 2.3 (4 Points)

After generating the f-list, the dataset can be sorted according to the f-list. This is necessary to
build the FP-tree.

Complete the function _sort_dataset_accoring_to_f_list, which sorts the dataset according
to the f-list:

_sort_dataset_according_to_f_list
def _sort_dataset_according_to_f_list(

self ,
dataset: Dataset ,
f_list: List[Itemset]

) -> SortedDataset:

Description:
• Sort the dataset according to the given f-list.
Parameters:
• dataset (Dataset): The dataset to be sorted.

• f_list (List[Itemset]): The f-list according to which the dataset should be sorted.
Returns:
• SortedDataset: The sorted dataset.

The input consists of a Dataset and a List[Itemset]. The method should return a SortedDataset.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_sort_dataset_according_to_f_list.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 10 of 21



Task 2.4 (3 Points)

With the sorted dataset, the FP-tree can be built.

Complete the function _construct_initial_fp_tree, which builds the initial FP-tree:

_construct_initial_fp_tree
def _construct_initial_fp_tree(

self ,
sorted_dataset: SortedDataset

) -> FPTree:

Description:
• Construct the initial FP-tree from the given sorted dataset.
Parameters:
• sorted_dataset (SortedDataset): The sorted dataset from which the initial FP-tree

should be constructed.
Returns:
• FPTree: The initial FP-tree.
Hint: FPTree implements a method add_items_to_tree, which might be helpful for this
task.

The input consists of a SortedDataset. The method should return an FPTree.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_construct_initial_fp_tree.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 11 of 21



Task 2.5 (5 Points)

In FP-growth, besides the initial FP-tree, the so-called conditional FP-trees also play a crucial
role. To be able to build these, the conditional pattern base must be generated.

Complete the function _get_conditional_pattern_base:

_get_conditional_pattern_base
def _get_conditional_pattern_base(

self ,
item: Item ,
fp_tree: FPTree

) -> ConditionalPatternBase:

Description:
• Get the conditional pattern base for the given item in the FP-tree.
Parameters:
• item (Item): The item for which the conditional pattern base should be generated.

• fp_tree (FPTree): The FP-tree from which the conditional pattern base should be
extracted.

Returns:
• ConditionalPatternBase: The conditional pattern base for the given item.

The input consists of an Item and an FPTree. The output is a ConditionalPatternBase.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_get_conditional_pattern_base.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 12 of 21



Task 2.6 (3 Points)

With the conditional pattern base, the conditional FP-tree can be built.

Complete the function _construct_conditional_fp_tree:

_construct_conditional_fp_tree
def _construct_conditional_fp_tree(

self ,
conditional_pattern_base: ConditionalPatternBase

) -> FPTree:

Description:
• Construct a conditional FP-tree from the given sorted dataset.
Parameters:
• conditional_pattern_base (ConditionalPatternBase): The conditional pattern base

for which the conditional FP-tree should be constructed.
Returns:
• FPTree: The conditional FP-tree.

The input consists of a ConditionalPatternBase. The method should return an FPTree.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_construct_conditional_fp_tree.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 13 of 21



Task 2.7 (4 Points)

The last missing step in FP-growth is to recursively mine the frequent itemsets.

Complete fit, which implements the FP-growth algorithm:

fit
def fit(

self ,
dataset: Dataset

):

Description:
• Use the FP-growth algorithm to find all frequent itemsets in the given dataset. Saves

the frequent itemsets in the frequent_itemsets attribute.
Parameters:
• dataset (Dataset): The dataset to which the FP-growth algorithm should be fitted.
Returns:
• None - The method saves the frequent itemsets in self.frequent_itemsets

The input consists of a Dataset. The method should not return anything but save the frequent
itemsets in the self.frequent_itemsets attribute of the FP-growth object.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_fit.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 14 of 21



Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

Dataset(s)

The most test cases are based on the following data sets:

Small Fruit Dataset

All test cases starting with the prefix test_with_small_fruit_dataset are based on a small
transactional dataset regarding fruits.

The dataset is structured as follows:

TID Items
1 Apple, Banana, Cherry
2 Banana, Cherry
3 Cherry, Apple
4 Dragonfruit, Apple, Cherry
5 Apple, Dragonfruit

Table 1: Small Fruit Dataset

Large Book Dataset

All test cases starting with the prefix test_with_large_book_dataset are based on a large(r)4

transactional dataset.

The dataset is structured as follows:

TID Books
1 Book 1, Book 2, Book 3
2 Book 2, Book 4, Book 5
3 Book 3, Book 6, Book 7
4 Book 4, Book 8, Book 9
5 Book 1, Book 5, Book 10
6 Book 6, Book 7, Book 8
7 Book 9, Book 10, Book 2
8 Book 3, Book 4, Book 5
9 Book 6, Book 8, Book 1
10 Book 7, Book 9, Book 10

Book Title
Book 1 The Shadows of Tomorrow
Book 2 Echoes of a Forgotten Realm
Book 3 Whispers of the Ancient World
Book 4 Chronicles of the Unseen
Book 5 Legends of the Fallen Skies
Book 6 Tales of the Crimson Dawn
Book 7 Secrets of the Silent Ocean
Book 8 Memories of the Last Horizon
Book 9 Dreams of the Distant Stars
Book 10 Visions of the Lost Empire

Table 2: Large Book Dataset

4The term "large" is, of course, somewhat exaggerated. However, the datasets should still be comprehensible by
humans, which is why this is the largest dataset we use for testing.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 15 of 21



Helper Classes

The following helper classes are provided in the classes/ folder to support your implementation.
Each class serves a specific purpose in the frequent pattern mining algorithms.

Basic Data Structures

Item (classes/item.py)

Represents a single item in the dataset.

• Attributes: name (str) - The name of the item

• Usage: Create items like Item("Apple") or Item("Book 1")

• Example: apple = Item("Apple")

Itemset (classes/itemset.py)

Represents a set of items (an itemset). This is the fundamental data structure for representing
collections of items.

• Attributes: items (FrozenSet[Item]) - An immutable set of items

• Usage: Create itemsets like Itemset({Item("Apple"), Item("Banana")})

• Iteration: You can iterate over items: for item in itemset: ...

• Example:
1 apple = Item("Apple")
2 banana = Item("Banana")
3 itemset = Itemset ({apple , banana })
4 for item in itemset:
5 print(item.name)

ItemTuple (classes/item_tuple.py)

Represents an ordered tuple of items. Unlike Itemset, the order of items matters here.

• Attributes: items (Tuple[Item]) - An ordered tuple of items

• Usage: Important for FP-Growth where item order according to the f-list is crucial

• Example: ItemTuple((Item("Apple"), Item("Banana")))

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 16 of 21



Transaction and Dataset Classes

Transaction (classes/transaction.py)

Represents a single transaction in the database.

• Attributes:

– id (int) - Unique transaction identifier

– items (Itemset) - The items purchased in this transaction

• Usage: Access transaction data: transaction.id, transaction.items

• Example:
1 transaction = Transaction (1, Itemset ({Item("Apple"), Item("Banana")}))
2 print(f"Transaction␣{transaction.id}␣contains␣{len(transaction.items.items)}␣items"

)

Dataset (classes/dataset.py)

Represents a complete transactional dataset.

• Attributes: transactions (FrozenSet[Transaction]) - All transactions

• Usage: Iterate over transactions: for transaction in dataset.transactions: ...

• Example:
1 for transaction in dataset.transactions:
2 print(f"Transaction␣{transaction.id}␣has␣{len(transaction.items.items)}␣items")

SortedTransaction (classes/sorted_transaction.py)

Represents a transaction where items are ordered (used in FP-Growth).

• Attributes:

– id (int) - Transaction identifier

– items (ItemTuple) - Items sorted according to f-list

• Usage: Similar to Transaction, but items maintain order

SortedDataset (classes/sorted_dataset.py)

Represents a dataset with sorted transactions.

• Attributes: transactions (FrozenSet[SortedTransaction])

• Usage: Used in FP-Growth after sorting transactions according to f-list

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 17 of 21



Counting and Support Classes

ItemsetsWithOccurrenceCounts (classes/itemsets_with_occurrence_counts.py)

A dictionary-like container that stores itemsets with their occurrence counts.

• Inherits from: Python’s UserDict

• Key Methods:

– add_occurrence(itemset) - Increments count by 1

– set_occurrence_count(itemset, count) - Sets specific count

– get_occurrence_count(itemset) - Returns current count

– remove_occurrence(itemset) - Decrements count by 1

• Usage: Essential for counting itemset frequencies in both algorithms

• Example:
1 counts = ItemsetsWithOccurrenceCounts ({itemset1 , itemset2 })
2 counts.add_occurrence(itemset1) # Count becomes 1
3 counts.set_occurrence_count(itemset2 , 5) # Set count to 5
4 current_count = counts.get_occurrence_count(itemset1) # Returns 1

FP-Tree Data Structures

FPTree (classes/fp_tree.py)

The main class representing an FP-Tree structure.

• Attributes: root (FPTreeRootNode) - The root node of the tree

• Key Methods:

– add_items_to_tree(item_tuple, occurrence_count) - Adds items to tree

– get_header_table() - Returns the header table

– get_all_item_nodes() - Returns all item nodes

– is_single_path() - Checks if tree has only one path

– is_empty() - Checks if tree is empty

• Usage: Central data structure for FP-Growth algorithm

• Example:
1 fp_tree = FPTree ()
2 item_tuple = ItemTuple ((Item("Apple"), Item("Banana")))
3 fp_tree.add_items_to_tree(item_tuple , 3) # Add with count 3

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 18 of 21



FPTreeNode (classes/fp_tree_node.py)

Base class for all FP-Tree nodes.

• Attributes:

– childs (List) - List of child nodes

– occurrence_count (int) - Frequency counter

• Methods: get_predecessors() - Returns predecessor nodes

• Usage: Base functionality for tree nodes (you typically don’t create these directly)

FPTreeRootNode (classes/fp_tree_root_node.py)

The root node of an FP-Tree.

• Inherits from: FPTreeNode

• Special Properties:

– Has no parent (parent = None)

– Not included in header table

• Key Methods:

– add_to_header_table(header_table) - Adds children to header table

– get_all_item_nodes() - Returns all item nodes in subtree

– is_single_path() - Checks if only one path exists

– is_empty() - Checks if tree is empty

• Usage: Automatically created when you create an FPTree

FPTreeItemNode (classes/fp_tree_item_node.py)

Represents an item node in the FP-Tree.

• Inherits from: FPTreeNode

• Attributes:

– item (Item) - The item this node represents

– occurrence_count (int) - How often this path occurs

– parent (FPTreeNode) - Parent node

• Key Methods:

– get_predecessors() - Returns path from root to this node

– add_to_header_table(header_table) - Adds node to header table

– get_all_item_nodes() - Returns all item nodes in subtree

– is_single_path() - Checks if subtree has only one path

• Usage: Automatically created when adding items to FP-Tree

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 19 of 21



FPTreeHeaderTable (classes/fp_tree_header_table.py)

Represents the header table of an FP-Tree.

• Attributes: elements (List[FPTreeHeaderTableElement])

• Usage: Provides quick access to all nodes of a specific item

• Example:
1 header_table = fp_tree.get_header_table ()
2 for element in header_table.elements:
3 print(f"Item:␣{element.item.name},␣Count:␣{element.overall_occurrence_count}")

FPTreeHeaderTableElement (classes/fp_tree_header_table_element.py)

Represents one entry in the header table.

• Attributes:

– item (Item) - The item this element represents

– overall_occurrence_count (int) - Total occurrences across all nodes

– node_links (List[FPTreeNode]) - Links to all nodes with this item

• Usage: Access all occurrences of a specific item in the tree

• Example:
1 for element in header_table.elements:
2 print(f"Item␣{element.item.name}␣appears␣{len(element.node_links)}␣times␣in␣

tree")
3 for node in element.node_links:
4 print(f"␣␣Node␣with␣count:␣{node.occurrence_count}")

Conditional Pattern Classes (FP-Growth specific)

ConditionalPattern (classes/conditional_pattern.py)

Represents a single conditional pattern.

• Attributes:

– prefix_items (ItemTuple) - The prefix path items (ordered according to f-list)

– occurrence_count (int) - How often this pattern occurs

• Usage: Used internally in FP-Growth for conditional pattern bases

• Note: The prefix items must be ordered from top to bottom according to the f-list

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 20 of 21



ConditionalPatternBase (classes/conditional_pattern_base.py)

Represents a conditional pattern base for an item.

• Attributes: conditional_patterns (FrozenSet[ConditionalPattern])

• Usage: Contains all conditional patterns for a specific item (one item can have multiple
prefix paths in the FP-tree)

• Example:
1 for pattern in conditional_pattern_base.conditional_patterns:
2 print(f"Pattern:␣{[item.name␣for␣item␣in␣pattern.prefix_items.items]}")
3 print(f"Count:␣{pattern.occurrence_count}")

Practical Tips

• Creating Items and Itemsets:
Always use the provided classes instead of raw strings or sets

• Iteration:
Most classes support Python’s standard iteration patterns (for item in itemset)

• Immutability:
Many classes use frozen sets/tuples for thread safety and hashability

• Type Hints:
Pay attention to the expected return types in function signatures

• Testing:
Use the provided test cases to understand expected behavior

• Dictionary Access:
ItemsetsWithOccurrenceCounts works like a dictionary - use square brackets for access

• Tree Traversal:
Use the provided methods like get_all_item_nodes() instead of manual traversal

• Debugging:
Most classes have __str__ methods for easy printing and debugging

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 21 of 21


