E/A\lu” Department of Computer Science
(/A Computer Science 6

Friedrich-Alexander-Universitat (Data M anagement)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 3:
Clustering

About this Assignment

In this assignment, your task is to implement the algorithms for K-means and DBSCAN. For
this purpose, you have access to a basic code skeleton, some helper classes, and several test
cases.

Key Data

e Max. Group Size: 3
¢ Max. Points: 30
« Estimated Workload: 3 - 4 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.'

Once that’s done, you have two main options for working on your assignment. You can clone
the repository? to your local machine by navigating to Code — Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code — Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution?. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You'll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

!Each student must join individually. You can join groups while accepting an assignment.
2If you're unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 8

https://github.com/git-guides/

How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 3 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

KDDmUe, SS 2025 — Submission 3:

Clustering Page 2 of 8

0O Utk WN

= = e e
UL WD = O ©

1

Task 1: K-means (14 Points)

K-means is a simple and widely used clustering algorithm. It partitions a dataset into k clusters
by iteratively assigning each data point to the cluster with the nearest centroid and updating
the centroids based on the mean of the data points in the cluster.

Task 1.1

The first step of the K-means algorithm is to distribute the data points to the k partitions. This
partition can be done randomly or by using a more sophisticated method. All partitions have
to be non-empty after the initialization and each data point has to be assigned to exactly one
partition.

Open kmeans.py and implement _initialize_partitions, which initializes the partitions for
the K-means algorithm:

def _initialize_partitions(self, points: List[Point]):
nnn
Initializes_the partitions(self.partitions)_ by assigning each point
toya,cluster/partition.
Alluclusters/partitionsuareunonuemptyuafteruthisumethoduisucalled.

Parameters:
points (List [Point]) :The points,to,cluster
nnn
Check if the number of points is greater or equal to the number of clusters
if len(points) < self.k:
raise ValueError(
"Number of points has toybegreater or equal to,the number of clusters."

)

TODO

The method expects a list of Points and does not return anything. The method should put
each point into one of the partitions available at self.partitions. The number of partitions
is given by the variable self .k.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_initialize_partitions.py

Task 1.2

A second important part of the K-means algorithm is to update the centroids of the partitions.
The centroid of a partition is the mean of all points in the partition.

Open kmeans.py and implement _update_centroids, which updates the centroids of the par-
titions:

KDDmUe, SS 2025 — Submission 3:

Clustering Page 3 of 8

0O~ O Ut WN -

= = e
=W NN = O ©o

1

0O Utk WN -

= = e e
T W N = OO

def _update_centroids(self):
nnn
Updates thecentroids of ;theypartitionsand writes the new,centroids
intoself.centroids.
Make sure that all partitions are non-empty
for partition in self.partitions:
if len(partition) == 0:
Throw an error 4if a partition is empty
raise ValueError (
"Allpartitions have to beynon-empty before updating, ,the centroids."

)

TODO

The method does not expect any parameters and does not return anything. The method should
update the self.centroids based on the mean of all points in the partition. The i-th centroid
in self.centroids should refer to the i-th partition in self.partitions.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_update_centroids.py

Task 1.3
The last step of the K-means algorithm is to assign each data point to the cluster with the
nearest centroid.

Open kmeans.py and implement _reassign_points(self), which assigns each data point to
the partition with the nearest centroid:

def _reassign_points(self) -> bool:
nnn

Reassignseach point toytheypartition with the closest centroid.

Ensures_ that each partition isynon-empty afteryreassigning, theypoints,
byurandomly_ reassigninggaysingle pointyfrom a,randomnon-emptypartition
withymoreythan one elementyinto,each ,empty partition.

Thisyisynecessary,toyavoidyemptyypartitions,ywhichywould lead toyk-means
notyproducing k,clusters, but k-n,clusters,(ny is, the number of empty partitions).

Returns:

bool: Trueyif the reassignment_ changed the partitions, False otherwise
nnn

TODO

The method does not expect any parameters and returns a boolean. The method should remove
all points from their previous partition and add them to the partition with the nearest centroid if
there is a closer centroid. If the reassignment changed the partitions, the method should return
True, otherwise False.

If there are empty partitions after the reassignment, the method should randomly reassign a
single point from a random non-empty partition with more than one element into each empty
partition. This is necessary to avoid empty partitions, which would lead to K-means not pro-
ducing k clusters, but k — n clusters (n being the number of empty partitions).

You can test whether your implementation is correct by executing the following command in
the console:

KDDmUe, SS 2025 — Submission 3:

Clustering Page 4 of 8

1

0O Utk W

1

pytest tests/kmeans/test_reassign_points.py

Task 1.4
The K-means algorithm is iterative. The algorithm stops if the partitions do not change anymore
or if a maximum number of iterations is reached.

Open kmeans.py and implement fit, which combines the previous steps to implement the
K-means algorithm:

def fit(self, points: List[Point]):

nnn

Fit,the K-Means clusteringg instance to, the given points.

Parameters:
points (List [Point]) :,The points, to,cluster

nnn

TODO

The method expects a list of Points and does not return anything. The method should imple-
ment the K-means algorithm by calling the methods _initialize_partitions, _update_centroids,
and _reassign_points.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/kmeans/test_fit.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 5 of 8

© 00O Ut W

1

0O Utk WN -

Task 2: DBSCAN

DBSCAN is a density-based clustering algorithm that groups together points that are closely
packed together. It is based on two parameters: € and MinPts.

Task 2.1 (2 Points)
A core part of the DBSCAN algorithm is to find all points that are within a distance of ¢ of a
given point, the so-called e-Neighborhood.

Open dbscan.py and implement _epsilon_neighborhood, which returns all points that are
within a distance of € of a given point:

def _get_neighborhood(self, point: Point, points: List[Point]) -> List[Point]:

nnn

Getytheyneighborhood of aypoint.

Parameters:
point(Point) : The point to,get the neighborhoodof.
points (List [Point]) :,The, points,to,consider.

Returns:
List [Point]:,The points,in,the neighborhood.

nnn

TODO

The method expects the Point for which the neighborhood should be determined and a list of
all Points that should be considered. The method should return all points that are within a
distance of ¢ of the given point as a list of Points. ¢ is given by the variable self.epsilon.

You can test whether your implementation is correct by executing the following command in
the console:

pytest tests/dbscan/test_epsilon_neighborhood.py

Task 2.2 (14 Points)

The function _epsilon_neighborhood can be used to implement the DBSCAN algorithm. The
algorithm can be implemented either iteratively or recursively.

Open dbscan.py and implement fit, which implements the DBSCAN algorithm:

def fit(self, points: List[Point]) -> None:

nnn

Fit,the ,DBSCAN clustering instance to the given points.

Parameters:
points (List [Point]) : The points,to cluster.

nnn

TODO

The method expects a list of Points and does store the found clusters in the variable self.clusters

and the noise points in the variable self.noise.

The method can be implemented either iteratively or recursively. Additional helper methods
can be implemented if necessary, but they will not be tested and therefore award no points.

Page 6 of 8

KDDmUe, SS 2025 — Submission 3:
Clustering

You can test whether your implementation is correct by executing the following command in
the console:

1 | pytest tests/dbscan/test_fit.py

KDDmUe, SS 2025 — Submission 3:

Clustering Page 7 of 8

Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

The most test cases are based on the following data sets:

Small Point Dataset

All test cases starting with the prefix test_with_small_point_dataset are based on the small
dataset of 2D Points known from Exercise Sheet 5 - Task 1/Task 2.

The dataset is structured as follows:

Points:
@ (1,1) (1,4) (2,3) (3,4) (4,3)
(1,2) (2,1) (3,2) (4,1) (4,4)

o = N W A wu

0O 1 2 3 4 5

Bigger Point Dataset

All test cases starting with the prefix test_with_bigger_point_dataset are based on a bigger
dataset of one-hundred 2D Points.

The dataset is structured as follows:

o
w

12 Points:

1 @ (-10-10) (-6,-6) (-2-1) (22) (6,-7)
10 (-10-9) (-6,-5) (-2,1) (2,3) (6,6)

9 (-10,-7) (-6,-3) (-2,2) (2,5) (6,7)

i (-10,10) (-6,6) (-1-2) (3-6) (6,9

. (-9,-10) (-5,-6) (-11) (3,4) (7,-10)

5 (-9-9) (-5-5) (-1,0) (3,3) (7-8)

4 (-9-8) (-5-4) (-11) (34) (7,)7)

z (-96) (-5, 2) ((1L2) (36) (7.8

1 (-9,9) (4-5) (0-3) (4-7) (7,10)

0 (-8,-9) (4 -4) (0-1) (4:5) (8,-10)
-1 (-8-8) (-4-3) (0,00 (44) (8-9)
- (87 (4-) (O (45 (88)
4 (-8-5) (- 474) 03) &7 (89
_5 (-8,8) (-3-4) (1,-4) (5-8) (9,-10)
-6 (-7-8) (-3-3) (12) (5-6) (9,-9)
-7 (7-7) (-3-2) (1,1) (55) (9,9)
:2 (-7-6) (3,00 (1,2) (5,5) (9,10)
_10 (-7-4) (-3,3) (1,4 (5,6) (10-10)
11 (7,7 (-2-3) (25) (5,8) (10,-8)
—12 (-6-7) (-2,-2) (2,-3) (6,-9) (10,10)
71{1%1079 —-8—-7—-6—-5—-4-3-2—-10 1 2 3 4 5 6 7 8 9 1011

KDDmUe, SS 2025 — Submission 3: Page 8 of 8

Clustering

