E/A\lu” Department of Computer Science
(/A Computer Science 6

Friedrich-Alexander-Universitat (Data M anagement)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 2:
Classification

About this Assignment

In this assignment, your task is to implement the algorithms for Decision Tree Induction and
Naive Bayes Classification. For this purpose, you have access to a basic code skeleton, some
helper classes, and several test cases.

Key Data

e Max. Group Size: 3
¢ Max. Points: 50
« Estimated Workload: 5 - 7.5 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.'

Once that’s done, you have two main options for working on your assignment. You can clone
the repository? to your local machine by navigating to Code — Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code — Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution?. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You'll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

!Each student must join individually. You can join groups while accepting an assignment.
2If you're unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 16

https://github.com/git-guides/

How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 2 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

P. 20f 16
Classification age < o

@ KDDmUe, SS 2025 — Submission 2:

© 00O Ut WN -

— =
N = O

1

Task 1: Decision Tree Induction

Decision tree induction is a commonly used method for classifying datasets. While the funda-
mental approach to decision tree induction is not very variable, using different attribute selection
methods can produce very different decision trees.

Important Note: Categorical and Continuous Attributes

In decision tree induction, a distinction is made between categorical and continuous at-
tributes. To simplify the distinction, you can assume all attributes containing strings to be
categorical, while numerical attributes are considered continuous. The target attributes are
always categorical.

Task 1.1: Attribute Selection Methods

Since attribute selection methods play a crucial role in decision tree induction, it is reasonable
to implement these first. In this submission, we limit ourselves to two methods: Information
Gain and Gini Index.

Task 1.1.1: Information Gain (4 Points)

The Information Gain is a measure of the difference in entropy before and after splitting a
dataset based on an attribute.

Task 1.1.1.1

To calculate the difference between the entropies before and after the split, the entropy of the
dataset prior to the split has to be computed.

Open information_gain.py and implement calculate_entropy, which calculates the entropy
of a dataset with regard to a target attribute:

def calculate_entropy(dataset: pd.DataFrame, target_attribute: str) -> float:

nnn

Calculateytheyentropyyforaygivenytarget attributeyingyagdataset.

Parameters:
datasetu(pd.DataFrame):uTheudatasetutoucalculateutheuentropyufor
target_attributey(str):, The, target attribute used as the classlabel

Returns:

float:, Theycalculated entropy, (= expected information)
nnn

TODO

The method expects a pandas DataFrame as the dataset and a string as the target attribute.
Make sure to return the calculated entropy as a float.

You can test whether your implementation is correct by executing the following command:

pytest tests/information_gain/test_calculate_entropy.py

@ KDDmUe, SS 2025 — Submission 2:

P. 3of 16
Classification age 2 o

© 00 O U WN

= e e e
0O Uk WN R~ O

00O Utk WN

[R e i el e e e
H O WUk WNRFEOO

Task 1.1.1.2
The next step is to calculate the entropy after the split.

Implement calculate_information_partitioned, which calculates the entropy of a dataset
after splitting it based on a specific attribute:

def calculate_information_partitioned (
dataset: pd.DataFrame, target_attribute: str,
partition_attribute: str, split_value: int | float = None,
) -> float:
nnn
Calculateytheinformation, foryaygivenytargetattributeyin aydatasetyif ,theydatasetyis
partitioned by aygivenyattribute.

Parameters:

dataset,(pd.DataFrame) : ,The dataset toycalculate the ,informationfor
target_attribute(str):, The, target attribute used as the classlabel
partition_attribute, (str):, The attribute that is used toypartition, the dataset
split_value,(int|float), default None:_ The, value toysplitthe partition attribute

on. If set, to, None, the function will calculate_theinformation_ for_a discrete-valued
partitiongyattribute. If set toyayvalue, the functionywill calculate the information
forya,continuous-valuedpartitiongyattribute.

TODO

Like calculate_entropy, calculate_information_partitioned also requires a dataset and
a target attribute. Additionally, the function requires a string that specifies which attribute is
used for partitioning. If the partitioning attribute is a continuous attribute, an optional numeric
value can be provided, indicating where the partitioning into two partitions should occur.

The function should return the calculated entropy as a float.

You can test whether your implementation is correct by executing the following command:

pytest tests/information_gain/test_calculate_information_partitioned.py

Task 1.1.1.3
Both entropies can be used to calculate the information gain.

Implement calculate_information_gain, which calculates the information gain for a dataset
based on a specific attribute:

def calculate_information_gain (
dataset: pd.DataFrame, target_attribute: str,
partition_attribute: str, split_value: int | float = None,

) -> float:
nnn
Calculateytheyinformation,gain foryaygiven targetyattribute inya dataset if the
dataset isypartitioned by aygivengattribute.

Parameters:

dataset (pd.DataFrame):The dataset to ,calculate the informationgain for
target_attribute(str) :,The target attribute used as the, class label
partition_attribute(str): The attribute that isyused toypartition the dataset
split_value,(int|float),_ default None: The ,value,to,splitthe partition attribute on.
If set to,None, the, function,willcalculate the information gain, foryadiscrete-valued
partitiongyattribute. If setytoyayvalue, the functionywill calculate the information
gainyforgagycontinuous-valuedypartition attribute.

Returns:
float: Theycalculated informationygain

TODO

KDDmUe, SS 2025 — Submission 2:

P. 4 of 16
Classification age = o

1

0O Uk WN -

1

The function expects a dataset, a target attribute, and a partitioning attribute. If the parti-
tioning attribute is continuous, a split value can be provided. The function should return the
calculated information gain as a float.

You can test whether your implementation is correct by executing the following command:

pytest tests/information_gain/test_calculate_information_gain.py

Task 1.1.2: Gini Index (4 Points)

The Gini Index is another attribute selection method. It measures the impurity of a dataset.

Task 1.1.2.1
To calculate the Gini Index, the impurity of the dataset has to be computed.

Open gini_index.py. Implement calculate_impurity, which calculates the impurity of a
dataset with regard to a target attribute:

def calculate_impurity(dataset: pd.DataFrame, target_attribute: str) -> float:

nunn

vuuuCalculateytheyimpurityforya,given target attribute ingyadataset.

vuuuParameters:
uuuudataset (pd.DataFrame) : ;The dataset toycalculate the impurity, for
uuuutarget_attribute (str):, The, target attribute usedas the classlabel

uuuuReturns:

vuuufloat: The,calculated impurity

nnn
[N NN

TODO

The function expects a dataset and a target attribute. Make sure to return the calculated
impurity as a float.

You can test whether your implementation is correct by executing the following command:

pytest tests/gini_index/test_calculate_impurity.py

Task 1.1.2.2
The next step is to calculate the impurity after the split.

Implement calculate_impurity_partitioned, which calculates the impurity of a dataset after
splitting it based on a specific attribute:

P. 5 of 16
Classification age 9 0

@ KDDmUe, SS 2025 — Submission 2:

0O~ O Ut WN -

e el el el e
OO Utk WN R~ OO

1

0O Utk WN

[R e i el e e i
= O OO Uk WNFOO©

def calculate_impurity_partitioned(
dataset: pd.DataFrame, target_attribute: str,
partition_attribute: str, split: int | float | Set[strl],
) -> float:
wun
Calculateytheyimpurity,foryaygiventarget jattributeyingyagdatasetyifthe dataset
isypartitioned byyaygiven attributeyandsplit.

Parameters:

dataset (pd.DataFrame):The dataset to calculate the impurity for
target_attribute(str) :,The target attribute used as the class label
partition_attribute,(str):, The attributethat is used toypartition the dataset
splity,(int|float|Set[str]): The,split used to,partition, the partitionattribute.
If theypartitionyattribute is discrete-valued, the, splityisga set of strings
(Set[str]) ., If the partition attribute is, continuous-valued, they,split is a
singleyvaluey (int or float).

nnn

TODO

The function expects a dataset, a target attribute, and a partitioning attribute. If the partition-
ing attribute is continuous, a single split value can be provided. If the partitioning attribute is
discrete, a set of strings can be provided. The function should return the calculated impurity
as a float.

You can test whether your implementation is correct by executing the following command:

pytest tests/gini_index/test_calculate_impurity_partitioned.py

Task 1.1.2.3
Both impurities can be used to calculate the gini index.

Implement calculate_gini_index, which calculates the gini index for a dataset based on a
specific attribute:

def calculate_gini_index(
dataset: pd.DataFrame, target_attribute: str,
partition_attribute: str, split: int | float | Setl[str],

) -> float:
nnn
CalculatetheGiniindex (= reductionof impurity) for,a,given target attributeinga
dataset if ytheydataset is partitioned by,a,givenyattribute andsplit.

Parameters:

dataset (pd.DataFrame) : The dataset to, calculate the Gini index for
target_attributey(str) :, The target attribute used as the class label
partition_attribute,(str):, The attribute that is used to,partition the dataset
split,(int|float|Set[str]): The,split,used toypartition thepartition attribute.
If theypartitionyattributeyis discrete-valued, theysplityisyagset ofystrings
(Set[str]) ., If the partition attribute iscontinuous-valued, theysplityis a
singlevalue,(int or float).

Returns:
float: Thecalculated Gini index

nnn

TODO

The function expects a dataset, a target attribute, and a partitioning attribute. If the partition-
ing attribute is continuous, a single split value can be provided. If the partitioning attribute is
discrete, a set of strings can be provided. The function should return the calculated gini index
as a float.

You can test whether your implementation is correct by executing the following command:

KDDmUe, SS 2025 — Submission 2:

P. 6 of 16
Classification age b o

1

O~ O U W

1

pytest tests/gini_index/test_calculate_gini_index.py

Task 1.2: Training (20 Points)

After implementing the attribute selection methods, the next step is to implement the decision
tree induction itself.

Task 1.2.1

One important step in decision tree induction is to determine the best attribute to split the
dataset on. For this purpose, the Information Gain or the Gini Index have to be calculated for
each attribute. Since there might be multiple splits for the same attribute and therefore multiple
information gains or gini indices, it is best to implement a separate function for this purpose.

Open decision_tree.py and implement _calculate_information_gain, which calculates the
best possible information gain for a specific attribute:

def _calculate_information_gain(
self, data: pd.DataFrame, attribute: str
) -> Tuple[float, List[DecisionTreeDecisionOutcome]]:

Calculate the,(best) information,gain forya,given attributein a dataset.

Parameters:
data, (pd.DataFrame) : ,The dataset to,calculate the, information,gain,for
attribute(str): The attribute toycalculateythe informationygain,for

Returns:
float: Theycalculated informationygain
List [DecisionTreeDecisionOutcome]: The outcomes the_ best,split of,this attributehas
nnn
If self.target_attribute is not set, raise an error
if self.target_attribute is None:
raise ValueError ("Target attribute not,set.")

If the attribute <s not in the dataset, raise an error
if attribute not in data.columns:

raise ValueError (f"Attribute,’{attributel}’ not_ in dataset.")

TODO

The function expects the dataset and the attribute for which the information gain is to be
calculated. The target classification attribute is already set in self.target_attribute when
the function is called.

The function should return the calculated information gain as a float and a list of outcomes.
The DecisionTreeDecisionOutcome objects represent the outcomes of the best split of the
attribute (e.g. if the attribute is Age, the outcomes might be < 25 and > 25).

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_calculate_information_gain.py

KDDmUe, SS 2025 — Submission 2:

P. 7of 16
Classification age o

0O Uk WN

Task 1.2.2

The same has to be done for the Gini Index.

Implement _calculate_gini_index, which calculates the best possible gini index for a specific
attribute:

def _calculate_gini_index(
self, data: pd.DataFrame, attribute: str
) -> Tuple[float, List[DecisionTreeDecisionOutcome]]:

nnn

Calculate the,(best) giniindex foryaygivenyattributeing,a dataset.

Parameters:
datay (pd.DataFrame) : The dataset toycalculate the,giniindex for
attribute,(str): The attribute, to,calculate the, gini index for

Returns:
float:Thecalculatedginiindex(reductionof impurity)
List [DecisionTreeDecisionOutcome]: The outcomes the bestysplit of,this attribute has
nnn
If self.target_attridbute is not set, raise an error
if self.target_attribute is None:
raise ValueError ("Target attribute not,set.")

If the attribute <s not in the dataset, raise an error
if attribute not in data.columns:

raise ValueError (f"Attribute,’{attributel}’ not_ in_ dataset.")

TODO

The function expects the dataset and the attribute for which the gini index is to be calculated.
The target classification attribute is already set in self.target_attribute when the function
is called.

The function should return the calculated gini index as a float and a list of outcomes. The
DecisionTreeDecisionOutcome objects represent the outcomes of the best split of the attribute
(e.g. if the attribute is Participation, the outcomes might be {High, Medium} and {Low}).

You can test whether your implementation is correct by executing the following command:

1 ’pytest tests/decision_tree/test_calculate_gini_index.py

Task 1.2.3

These functions can now be used to find the best attribute to split the dataset on.

Implement _find_best_split, which finds the best split for a given dataset:

KDDmUe, SS 2025 — Submission 2:

P. 8 of 16
Classification age S o

0O~ O Ut WN -

e el el el e
OO Utk WN R~ OO

1

© 00 O Ut WN

1

def _find_best_split(
self, data: pd.DataFrame, attribute_list: List[str], attribute_selection_method: str,
) -> Tuple[str, List[DecisionTreeDecisionOutcome]]:
nnn
Findytheybest split foryaygiven datasetyandgattribute list. Finding, the best_split
includesfinding,the bestattribute toysplityon,andalso,(depending on,the attribute
selection method) the bestyset of outcomes to,splityon,thisyattribute.

Parameters:

datay (pd.DataFrame) : The dataset to,find the best,splitting attribute for
attribute_list (List[str]) : The_ list_ of jattributes_ to,consider
attribute_selection_method_ (str): The attribute selection_ method_ to use

Returns:
str: Thejattributeytoyspliton
List [DecisionTreeDecisionOutcome]: The outcomes a,spliton,this attribute should have

nnn

TODO

The function expects the dataset, a list of all attributes that might become the splitting at-
tribute, and the attribute selection method. The attribute selection method can be either
information_gain or gini_index. The function should return the best attribute to split on
and a list of DecisionTreeDecisionOutcomes.

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_find_best_split.py

Task 1.2.4

The next step is to implement the recursive creation of the decision tree.

Implement _build_tree, which recursively builds the decision tree:

def _build_tree(
self,
data: pd.DataFrame,
attribute_list: List[str],
attribute_selection_method: str,
) -> DecisionTreeNode:

nnn

uvuuuRecursively build the decision tree.

Parameters:

datay (pd.DataFrame) : The,(partial) dataset toybuild the decision tree with
attribute_list, (List[str]): Theylist_of_ attributes_ to_consider
attribute_selection_method_ (str): The_attribute selection_ method_ to_use

Returns:
DecisionTreeNode: The root_ node of the decision tree

TODO

The function expects the dataset, a list of all attributes that might become the splitting at-
tribute, and the attribute selection method. The attribute selection method can be either
information_gain or gini_index. The function should return the DecisionTreeNode that
represents the root node of the part of the decision tree that was built within the call of the
function.

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_build_tree.py

KDDmUe, SS 2025 — Submission 2:

P. 9of 16
Classification age v o

© 00 O Ut W

[R R N R e e e el e e e
WNHFE OO0 Uk WNn~=O

1

Task 1.2.5

The last step is to implement the method to train the decision tree on a specific dataset.

Implement fit, which fits the decision tree to the dataset:

def fit(
self, dataset: pd.DataFrame,
target_attribute: str, attribute_selection_method: str,

nnn

Fitydecisionytreegyon,a,given ,dataset andytargetyattribute, jusing,a specified
attribute selection method.

Parameters:
dataset(pd.DataFrame) : ,The dataset to,fit, the decision tree on
target_attribute(str):, The target attribute to predict
attribute_selection_method_ (str): The_attribute selection_ method to_use
nnn
Make sure that the target_attribute <s in the dataset
if target_attribute not in dataset.columns:
raise ValueError (f"Targetattribute, ’{target_attributel}’notyin dataset.")

Make sure that the attribute_selection_method is wvalid

if attribute_selection_method not in ["information_gain","gini_index",]:
raise ValueError (f"Attribute selection_ method,’{attribute_selection_method}’
notyvalid,(selecteither,’information_gain’ or,’gini_index’).")

TODO

The function expects the dataset, the target attribute, and the attribute selection method that
should be used to build the decision tree. The function doesn’t return anything, but sets both
members self.target_attribute and self.tree. The former is the target attribute, and the
latter is the root node of the decision tree.

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_fit.py

Task 1.3: Prediction (4 Points)

With a trained decision tree, the classes of new tuples can be predicted.

Task 1.3.1

The first step is to implement the method to predict the class of a single tuple.

Within decision_tree.py implement _predict_tuple, which predicts the class of a single
tuple:

KDDmUe, SS 2025 — Submission 2:

P 10 of 16
Classification age ©

0O~ O Ut WN -

= = e e
DU W= OO

1

0~ Uk WN

1

def _predict_tuple(
self, tuple: pd.Series, node: DecisionTreeNode

) -> str | int | float:
nnn
Predict the target attribute foryaygiven row,in the dataset.
Thisgyisyapyrecursive function_ that traverses the_ decision_ treeuntil_ a ;leaf node
isyreached.

Parameters:
tuple,(pd.Series) : The row,to,predict the target attribute for
node (DecisionTreeNode) : ;The current node_in, the decision tree

Returns:

strylyinty | float:The predicted class label
nnn

TODO

The function expects a single tuple as a pandas Series and the current node of the decision tree.
The function should return the predicted class label.

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_predict_tuple.py

Task 1.3.2

The last step is to implement the method to predict the classes of a complete dataset.

Implement predict, which predicts the classes of a dataset:

def predict(self, dataset: pd.DataFrame) -> List[str | int | float]:

Predict the target attribute foryaygiven ,dataset.

Parameters:
dataset (pd.DataFrame):,The ,dataset to predict, the target attribute for

Returns:
List[strylyuintylyfloat]: A list0f ypredicted; class labels

nnn

If the tree is not fitted, raise an error
if self.tree is None:
raise ValueError("Tree_ not_ fitted._ Call_ fit method_ first.")

TODO

The function expects a dataset and should return a list of predicted class labels.

You can test whether your implementation is correct by executing the following command:

pytest tests/decision_tree/test_predict.py

KDDmUe, SS 2025 — Submission 2:

P. 11 of 16
Classification age ©

OO Ui W

e e el el el
OO Uk WN R~ OO

1

Task 2: Naive Bayes Classification

Naive Bayes is a simple classification algorithm based on Bayes’ Theorem. It is called "naive'
because it assumes that the attributes are conditionally independent given the class label.

Important Note: Categorical and Continuous Attributes

In naive Bayes classification, a distinction is made between categorical and continuous at-
tributes. To simplify the distinction, you can assume all attributes containing strings to be
categorical, while numerical attributes are considered continuous. The target attributes are
always categorical.

Task 2.1: Training (14 Points)

To be able to classify new tuples, the algorithm has to be trained on a dataset.

Task 2.1.1

For the training, the algorithm has to calculate the prior probabilities for each of the classes.

Open naive_bayes.py and implement _calculate_prior_probabilities, which calculates
the prior probabilities for each class:

def _calculate_prior_probabilities(
self, dataset: pd.DataFrame
) -> NaiveBayesPriorProbabilities:
nnn
Calculatethe prior probability forgeach class.
(They,target attribute has,to, be,set before calling, this method.)

Parameters:
dataset (pd.DataFrame) : The training dataset

Returns:
NaiveBayesPriorProbabilities: Theyprior,probabilities for,eachclass
nnn
Make sure that the target_attribute s set
if self.target_attribute is None:
raise ValueError ("Target attribute not,set.")

TODO

The function expects a dataset and should return an instance of NaiveBayesPriorProbabilities.
This object contains the prior probabilities for each class. The target attribute is already set in
self.target_attribute when the function is called.

You can test whether your implementation is correct by executing the following command:

pytest tests/naive_bayes/test_calculate_prior_probabilities.py

@ KDDmUe, SS 2025 — Submission 2: Page 12 of 16

Classification

0O Uk WN

1

© 00O U W~

Task 2.1.2

The next step is to calculate the likelihoods for each attribute given the class label.

Implement _calculate_likelihoods, which calculates the likelihoods for each attribute given
the class label:

def _calculate_likelihoods(self, dataset: pd.DataFrame) -> NaiveBayesLikelihoods:
nnn
Calculate the ;likelihoods for ,each attribute and,class.
(Theytarget attribute has_ to beset beforecalling, this method.)

Parameters:
dataset (pd.DataFrame): The training, dataset

Returns:
NaiveBayesLikelihoods: The likelihoods for ,each attribute and, class
nnn
Make sure that the target_attribute is set
if self.target_attribute is None:

raise ValueError ("Target attribute not,set.")

TODO

The function expects a dataset and should return an instance of NaiveBayesLikelihoods. This
object contains the likelihoods for each attribute given the class label. The target attribute is
already set in self.target_attribute when the function is called.

You can test whether your implementation is correct by executing the following command:

pytest tests/naive_bayes/test_calculate_likelihoods.py

Task 2.1.3

The last step is to implement the method to train the naive Bayes classifier on a specific
dataset.

Implement fit, which fits the naive Bayes classifier to the dataset:

def fit(self, dataset: pd.DataFrame, target_attribute: str):
nnn
Fitythe Naive_ Bayes,classifier toythe, training dataset.
Sets,the targetyattribute and the class labels.
Calculatesytheypriorprobabilities, and,the ;likelihoods.

Parameters:
dataset (pd.DataFrame) : The training dataset
target_attributey(str) :, The target attribute to predict
nnn
Make sure that the target_attribute <s in the dataset
if target_attribute not in dataset.columns:
raise ValueError (f"Targetattribute, ’{target_attributel}’ynotyin dataset.")

TODO

The function expects the dataset and the target attribute. The function doesn’t return anything,
but sets the members self.target_attribute, self.class_labels, self.prior_probabilities,
and self.likelihoods. The former is the target attribute, the second is a list of all possible
class labels, the third is an instance of NaiveBayesPriorProbabilities, and the last is an
instance of NaiveBayesLikelihoods.

KDDmUe, SS 2025 — Submission 2:

P 13 of 16
Classification age ©

1

—_
= O © 000 Utk W -

—_

1

© 00 O U WN -

= = e e e
NO Utk WN = O

You can test whether your implementation is correct by executing the following command:

pytest tests/naive_bayes/test_fit.py

Task 2.2: Prediction (4 Points)

With a trained naive Bayes classifier, the classes of new tuples can be predicted.

Task 2.2.1

The first step is to implement the method to predict the class of a single tuple.

Within naive_bayes.py implement _predict_tuple, which predicts the class of a single tu-
ple:

def _predict_tuple(self, tuple: pd.Series) -> str | int | float:

Predict the target attribute foryaygiven,row,in the dataset.

Parameters:
tuple,(pd.Series): The, row,in the dataset toypredict the target attribute for

Returns:
strylyuintylyfloat: Theypredicted classlabel

nnn

TODO

The function expects a single tuple as a pandas Series. The function should return the predicted
class label.

You can test whether your implementation is correct by executing the following command:

pytest tests/mnaive_bayes/test_predict_tuple.py

Task 2.2.2

The last step is to implement the method to predict the classes of a complete dataset.

Implement predict, which predicts the classes of a dataset:

def predict(self, dataset: pd.DataFrame) -> List[str | int | float]:

nnn

Predict theytarget attributeyforyaygiven ,,dataset.

Parameters:
dataset (pd.DataFrame): The dataset to predict the target attribute for

Returns:

List[stry |y int, | float]: A, list of ypredictedclasslabels
nnn

If the likelihoods or/and the prior probabilities are not calculated yet, raise
an error
if self.likelihoods is None or self.prior_probabilities is None:

raise ValueError ("Modelynotytrained,yet.")

TODO

KDDmUe, SS 2025 — Submission 2:

P. 14 of 16
Classification age ©

The function expects a dataset and should return a list of predicted class labels.

You can test whether your implementation is correct by executing the following command:

1 |pytest tests/naive_bayes/test_predict.py

P 15 of 16
Classification age ©

@ KDDmUe, SS 2025 — Submission 2:

Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

The most test cases are based on the following data sets:

Small Student Dataset

All test cases starting with the prefix test_with_small_student_dataset are based on the
small student dataset known from Exercise Sheet 4 - Task 1.

The dataset is structured as follows:

Age | Major | Participation | Passed
23 CS High Yes
23 DS Low No
26 DS High Yes
24 DS Medium Yes
26 DS Medium No
26 DS Low No

Table 1: Small Student Dataset

Small Submission Dataset

All test cases starting with the prefix test_with_small_student_dataset are based on the
small submission dataset known from Exercise Sheet 4 - Task 2.

The dataset is structured as follows:

Topic Knowledge | Hours | Passed

Classification High 1,0 No
Clustering Low 4,0 No
Frequent Patterns High 5,0 Yes
Clustering Medium 5,0 Yes
Frequent Patterns High 2,0 No
Frequent Patterns Medium 3,0 Yes
Classification Low 6,0 Yes
Clustering Low 5,0 Yes
Clustering High 3,0 Yes
Classification Medium 4,0 Yes

Table 2: Small Submission Dataset

P 16 of 16
Classification age ©

@ KDDmUe, SS 2025 — Submission 2:

