
Department of Computer Science
Computer Science 6
(Data Management)

Knowledge Discovery in Databases with Exercises
Summer Semester 2025

Submission 1:
Frequent Patterns

About this Assignment

Throughout the course of this assignment, you will independently implement the two methods,
Apriori (Task 1) and FP-growth (Task 2). For this purpose, a basic code skeleton, several helper
classes, and some test cases are provided to you.

Key Data

• Max. Group Size: 3

• Max. Points: 40

• Estimated Workload: 4 - 6 hours

How to Work on the Assignment

To start working on the assignment, you’ll need to accept the assignment via GitHub Classroom
by clicking the provided link. This will set up a new GitHub repository for your group, packed
with all the necessary files for the assignment. If you’re joining an existing group, it’ll add you
to that group’s repository.1

Once that’s done, you have two main options for working on your assignment. You can clone
the repository2 to your local machine by navigating to Code → Local, which allows you to
work directly from your computer. Alternatively, you might prefer using GitHub Codespaces
by selecting Code → Codespaces for a virtual online environment, complete with the ability to
run Python through the Terminal provided.

Whichever method you choose, it’s crucial to commit and push your changes back to the repos-
itory to submit your solution2. After your submission, GitHub Actions takes over to automati-
cally grade your solution and provide feedback. You’ll find this feedback in the Actions tab of
your repository. If you didn’t receive full points, you can improve your solution and push the
changes back to the repository to trigger a reevaluation.

1Each student must join individually. You can join groups while accepting an assignment.
2If you’re unfamiliar with Git or GitHub, check out this helpful guide: https://github.com/git-guides/

Page 1 of 10

https://github.com/git-guides/


How to Prepare the Transfer the Points to StudOn

In addition to joining the GitHub Classroom, you also need to register your GitHub username
on StudOn. This is necessary to transfer the points you’ve earned on GitHub to StudOn. To do
this, enter your GitHub username in Submission 1 - GitHub Username. Make sure to enter
your username correctly, as otherwise, the points cannot be transferred.

After submission deadline, the points you’ve earned on GitHub will be transferred to StudOn.
This process is not immediate and may take a few days. If you have any questions or issues,
please contact us via the StudOn forum.

Restrictions

Within the scope of your implementation, you are not permitted to modify the helper classes,
the test cases, or the provided GitHub Actions.

This will be checked on a random basis, and any attempt to do so will result in zero points for
the involved group, similar to the consequences of plagiarism.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 2 of 10



Task 1: Apriori

Apriori is a classic algorithm for frequent itemset mining over transactional databases. It pro-
ceeds by identifying the frequent individual items in the database and extending them to larger
and larger itemsets as long as those itemsets appear sufficiently often in the database.

Task 1.1

At the beginning of Apriori, the identification of 1-itemsets is paramount.

Open apriori.py in your repository and implement the _generate_one_itemsets, which gen-
erates all 1-itemsets for a given dataset:

1 def _generate_one_itemsets(self , dataset: Dataset) -> Set[Itemset ]:
2 """
3 Generate␣all␣1-itemsets␣for␣the␣given␣dataset.
4
5 Parameters:
6 dataset␣(Dataset):␣The␣dataset␣for␣which␣the␣1-itemsets␣should␣be␣generated.
7
8 Returns:
9 Set[Itemset ]:␣A␣set␣containing␣all␣1-itemsets␣that␣are␣contained␣in␣the␣dataset.

10 """
11 # TODO

Make sure that you expect a Dataset and return a Set[Itemset]3.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_generate_one_itemsets.py

Task 1.2

After the 1-itemsets have been identified, the next step is to count the occurrences of these
itemsets in the dataset.

Complete the function _count_occurrences_of_itemsets, which counts the occurrences of all
given itemsets in the dataset:

1 def _count_occurrences_of_itemsets(
2 self , dataset: Dataset , itemsets: Set[Itemset]
3 ) -> ItemsetsWithOccurrenceCounts:
4 """
5 ␣␣␣␣Count␣the␣occurrences␣of␣the␣given␣itemsets␣in␣the␣dataset.
6
7 Parameters:
8 dataset␣(Dataset):␣The␣dataset␣for␣which␣the␣itemset␣occurrences␣should␣be␣counted.
9 itemsets␣(Set[Itemset ]):␣The␣itemsets␣for␣which␣the␣occurrences␣should␣be␣counted.

10 The␣itemsets␣do␣not␣need␣to␣be␣present␣in␣the␣dataset.
11
12 Returns:
13 ItemsetsWithOccurrenceCounts:␣A␣dictionary␣containing␣the␣itemsets␣as␣keys␣and
14 their␣occurrence␣counts␣as␣values.
15 """
16 # TODO

3Hint: Itemset and Database are helper classes that can be found in the classes/ folder.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 3 of 10



Expect that the input consists of a Dataset and a Set[Itemset]. The method should return
an instance of ItemsetsWithOccurrenceCounts.

Also be aware that the method should be able to count the occurrences of itemsets with any
length, not just 1-itemsets.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_count_occurrences_of_itemsets.py

Task 1.3

After counting occurrences, it is necessary in Apriori to prune all itemsets falling below the
minimum support threshold.

Complete the function _prune_itemsets_below_min_support, which prunes all itemsets that
do not meet the minimum support threshold:

1 def _prune_itemsets_below_min_support(
2 self ,
3 itemsets_with_occurrence_counts: ItemsetsWithOccurrenceCounts ,
4 ) -> Set[Itemset ]:
5 """
6 Prune␣itemsets␣that␣are␣below␣the␣minimum␣support␣threshold.
7
8 Parameters:
9 itemsets_with_occurrence_counts␣(ItemsetsWithOccurrenceCounts):␣A␣dictionary␣containing

10 the␣itemsets␣as␣keys␣and␣their␣occurrence␣counts␣as␣values.
11
12 Returns:
13 Set[Itemset ]:␣A␣set␣containing␣all␣itemsets␣that␣are␣considered␣frequent.
14 """
15 # TODO

The input consists of an ItemsetsWithOccurrenceCounts. The (absolute) minimum support is
a member variable of the Apriori object and can therefore be accessed via self.min_support.
You have to return a Set[Itemset].

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_prune_itemsets_below_min_support.py

Task 1.4

The last missing step in the Apriori algorithm is to generate the candidate itemsets for the next
iteration.

Complete the function _generate_candidate_itemsets, which generates the candidate item-
sets for the next iteration:

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 4 of 10



1 def _generate_candidate_itemsets(
2 self , frequent_itemsets: Set[Itemset]
3 ) -> Set[Itemset ]:
4 """
5 Generate␣length -k+1␣candidate␣itemsets␣based␣on␣the␣given␣frequent␣itemsets.
6 k␣is␣the␣length␣of␣the␣longest␣frequent␣itemset.
7
8 Parameters:
9 frequent_itemsets␣(Set[Itemset ]):␣A␣set␣containing␣all␣frequent␣itemsets.

10
11 Returns:
12 Set[Itemset ]:␣A␣set␣containing␣all␣length -k+1␣candidate␣itemsets.
13 """
14
15 # If there are no frequent itemsets , return an empty set
16 if not frequent_itemsets:
17 return set()
18
19 # TODO

The input consists of a Set[Itemset] containing all frequent itemsets. The method should
return a Set[Itemset] containing all candidate itemsets for the next iteration.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_generate_candidate_itemsets.py

Task 1.5

All previous steps can be combined into a single algorithm: Apriori.

Complete the function fit, which implements the Apriori algorithm:

1 def fit(self , dataset: Dataset):
2 """
3 Use␣the␣Apriori␣algorithm␣to␣find␣all␣frequent␣itemsets␣in␣the␣given␣dataset.
4 Saves␣the␣frequent␣itemsets␣in␣the␣frequent_itemsets␣attribute.
5
6 Parameters:
7 dataset␣(Dataset):␣The␣dataset␣to␣which␣the␣Apriori␣algorithm␣should␣be␣fitted.
8 """
9

10 # Reset the set of frequent itemsets
11 self.frequent_itemsets = set()
12
13 # TODO

The input consists of a Dataset. The method should not return anything but save the frequent
itemsets in the self.frequent_itemsets attribute of the Apriori object.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/apriori/test_fit.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 5 of 10



Task 2: FP-growth

While Apriori represents a very simple approach to mining frequent itemsets, there are alterna-
tive methods available. An interesting method is FP-growth, which necessitates only two passes
on the original dataset. This is achieved through the utilization of the so-called FP-trees.

Task 2.1

The first step in FP-growth is to find all frequent 1-itemsets. At the same time, it is beneficial
not to immediately discard the occurrence counts of the frequent 1-itemsets.

In fpgrowth.py implement _generate_frequent_one_itemsets_with_occurrence_counts,
which generates all 1-itemsets together with their occurrence counts for a given dataset:

1 def _generate_frequent_one_itemsets_with_occurrence_counts(
2 self , dataset: Dataset
3 ) -> ItemsetsWithOccurrenceCounts:
4 """
5 Generate␣all␣frequent␣1-itemsets␣for␣the␣given␣dataset.
6
7 Parameters:
8 dataset␣(Dataset):␣The␣dataset␣for␣which␣the␣frequent␣1-itemsets␣should␣be␣generated.
9

10 Returns:
11 ItemsetsWithOccurrenceCounts:␣A␣dictionary␣containing␣the␣frequent␣1-itemsets␣as␣keys
12 and␣their␣occurrence␣counts␣as␣values.
13 """
14 # TODO

Expect a Dataset as input and return an ItemsetsWithOccurrenceCounts. Remember that
you did do a similar task in Apriori.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_generate_frequent_one_itemsets_with_occurrence_counts.py

Task 2.2

After identifying the frequent 1-itemsets, the f-list can be generated. This is where the occurrence
counts of the frequent 1-itemsets come into play.

Complete _generate_f_list:

1 def _generate_f_list(
2 self , frequent_one_itemsets: ItemsetsWithOccurrenceCounts
3 ) -> List[Itemset ]:
4 """
5 Generate␣the␣f-list␣for␣the␣given␣frequent␣1-itemsets.
6
7 Parameters:
8 frequent_one_itemsets␣(ItemsetsWithOccurrenceCounts):␣The␣frequent␣1-itemsets␣with
9 their␣occurrence␣counts␣for␣which␣the␣F-list␣should␣be␣generated.

10
11 Returns:
12 List[Itemset ]:␣A␣f-list␣containing␣the␣frequent␣1-itemsets␣sorted␣by␣decreasing
13 occurrence␣count.
14 """
15 # TODO

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 6 of 10



The input consists of an ItemsetsWithOccurrenceCounts. The return value should be a
List[Itemset] containing the frequent 1-itemsets sorted by decreasing occurrence count

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_generate_f_list.py

Task 2.3

After generating the f-list, the dataset can be sorted according to the f-list. This is necessary to
build the FP-tree.

Complete the function _sort_dataset_accoring_to_f_list, which sorts the dataset according
to the f-list:

1 def _sort_dataset_according_to_f_list(
2 self , dataset: Dataset , f_list: List[Itemset]
3 ) -> SortedDataset:
4 """
5 Sort␣the␣dataset␣according␣to␣the␣given␣f-list.
6
7 Parameters:
8 dataset␣(Dataset):␣The␣dataset␣to␣be␣sorted.
9 f_list␣(List[Itemset ]):␣The␣f-list␣according␣to␣which␣the␣dataset␣should␣be␣sorted.

10
11 Returns:
12 SortedDataset:␣The␣sorted␣dataset.
13 """
14 # TODO

The input consists of a Dataset and a List[Itemset]. The method should return a SortedDataset.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_sort_dataset_according_to_f_list.py

Task 2.4

With the sorted dataset, the FP-tree can be built.

Complete the function _construct_initial_fp_tree, which builds the initial FP-tree:

1 def _construct_initial_fp_tree(self , sorted_dataset: SortedDataset) -> FPTree:
2 """
3 Construct␣the␣initial␣FP-tree␣from␣the␣given␣sorted␣dataset.
4
5 Parameters:
6 sorted_dataset␣(SortedDataset):␣The␣sorted␣dataset␣from␣which␣the␣initial
7 FP -tree␣should␣be␣constructed.
8
9 Returns:

10 FPTree:␣The␣initial␣FP -tree.
11 """
12 # TODO

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 7 of 10



The input consists of a SortedDataset. The method should return an FPTree.

FPTree implements a method add_items_to_tree, which might be helpful for this task.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_construct_initial_fp_tree.py

Task 2.5

In FP-growth, besides the initial FP-tree, the so-called conditional FP-trees also play a crucial
role. To be able to build these, the conditional pattern base must be generated.

Complete the function _get_conditional_pattern_base:

1 def _get_conditional_pattern_base(
2 self , item: Item , fp_tree: FPTree
3 ) -> ConditionalPatternBase:
4 """
5 Get␣the␣conditional␣pattern␣base␣for␣the␣given␣item␣in␣the␣FP -tree.
6
7 Parameters:
8 item␣(Item):␣The␣item␣for␣which␣the␣conditional␣pattern␣base␣should␣be␣generated.
9 fp_tree␣(FPTree):␣The␣FP-tree␣from␣which␣the␣conditional␣pattern␣base␣should

10 be␣extracted.
11
12 Returns:
13 ConditionalPatternBase:␣The␣conditional␣pattern␣base␣for␣the␣given␣item.
14 """
15 # TODO

The input consists of an Item and an FPTree. The output is a ConditionalPatternBase.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_get_conditional_pattern_base.py

Task 2.6

With the conditional pattern base, the conditional FP-tree can be built.

Complete the function _construct_conditional_fp_tree:

1 def _construct_conditional_fp_tree(
2 self , conditional_pattern_base: ConditionalPatternBase
3 ) -> FPTree:
4 """
5 Construct␣a␣conditional␣FP -tree␣from␣the␣given␣sorted␣dataset.
6
7 Parameters:
8 conditional_pattern_base␣(ConditionalPatternBase):␣The␣conditional␣pattern␣base
9 for␣which␣the␣conditional␣FP-tree␣should␣be␣constructed.

10
11 Returns:
12 FPTree:␣The␣conditional␣FP-tree.
13 """
14 # TODO

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 8 of 10



The input consists of a ConditionalPatternBase. The method should return an FPTree.

There are a lot of similarities between this function and _construct_initial_fp_tree.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_construct_conditional_fp_tree.py

Task 2.7

The last missing step in FP-growth is to recursively mine the frequent itemsets.

Complete fit, which implements the FP-growth algorithm:

1 def fit(self , dataset: Dataset):
2 """
3 Use␣the␣FP-growth␣algorithm␣to␣find␣all␣frequent␣itemsets␣in␣the␣given␣dataset.
4 Saves␣the␣frequent␣itemsets␣in␣the␣frequent_itemsets␣attribute.
5
6 Parameters:
7 dataset␣(Dataset):␣The␣dataset␣to␣which␣the␣FP -growth␣algorithm␣should␣be␣fitted.
8 """
9 # TODO

The input consists of a Dataset. The method should not return anything but save the frequent
itemsets in the self.frequent_itemsets attribute of the FP-growth object.

You are free to implement some extra methods if you think they are necessary.

You can test whether your implementation is correct by executing the following command in
the console:

1 pytest tests/fpgrowth/test_fit.py

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 9 of 10



Appendices

In Task 1 and Task 2 test cases are provided and used to grade the submission.

The most test cases are based on the following data sets:

Small Fruit Dataset

All test cases starting with the prefix test_with_small_fruit_dataset are based on a small
transactional dataset regarding fruits.

The dataset is structured as follows:

TID Items
1 Apple, Banana, Cherry
2 Banana, Cherry
3 Cherry, Apple
4 Dragonfruit, Apple, Cherry
5 Apple, Dragonfruit

Table 1: Small Fruit Dataset

Large Book Dataset

All test cases starting with the prefix test_with_large_book_dataset are based on a large(r)4

transactional dataset.

The dataset is structured as follows:

TID Books
1 Book 1, Book 2, Book 3
2 Book 2, Book 4, Book 5
3 Book 3, Book 6, Book 7
4 Book 4, Book 8, Book 9
5 Book 1, Book 5, Book 10
6 Book 6, Book 7, Book 8
7 Book 9, Book 10, Book 2
8 Book 3, Book 4, Book 5
9 Book 6, Book 8, Book 1
10 Book 7, Book 9, Book 10

Book Title
Book 1 The Shadows of Tomorrow
Book 2 Echoes of a Forgotten Realm
Book 3 Whispers of the Ancient World
Book 4 Chronicles of the Unseen
Book 5 Legends of the Fallen Skies
Book 6 Tales of the Crimson Dawn
Book 7 Secrets of the Silent Ocean
Book 8 Memories of the Last Horizon
Book 9 Dreams of the Distant Stars
Book 10 Visions of the Lost Empire

Table 2: Large Book Dataset

4The term "large" is, of course, somewhat exaggerated. However, the datasets should still be comprehensible by
humans, which is why this is the largest dataset we use for testing.

KDDmUe, SS 2025 – Submission 1:
Frequent Patterns Page 10 of 10


