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Outlier and Outlier Analysis



What are Outliers?

Outlier
An outlier is a data tuple that deviates significantly from normal data tuples as if generated by a different
mechanism.

• Outliers are different from noise.
• Noise is a random error or variance in a measured variable.
• Noise should be removed before outlier detection.

• Outliers are interesting.
• They violate the mechanism that generates data tuples that are considered normal.
• Could occur by chance, measurement error, or any other reason.
→ Justification why a tuple is an outlier is important.

• Outlier detection vs. novelty detection: Early stage: outlier; but later merged into the model.
• Applications: fraud detection, customer segmentation, medical analysis, industry damage

detection.
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Types of Outliers (I)

R

Three kinds: global, contextual, and collective outliers
1. Global outlier (or point anomaly):

• Significantly deviates from the rest of the data set.
• Simplest form of outlier, therefore, most methods focus on finding these.
• Issue: Find an appropriate measurement of deviation.

2. Contextual outlier (or conditional outlier):
• Deviates significantly based on a selected context.

• Example: Is 23°C in Erlangen an outlier? (Depending on summer or winter).
• Attributes of data objects divided into two groups:

• Contextual attributes: define the context, e.g., time & location.
• Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature.

• Can be viewed as a generalization of local outliers (density significantly deviates from its local area).
• Issue: Formulation of a meaningful context.
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Types of Outliers (II)

3. Collective outlier:
• A subset of data objects that collectively

deviates significantly from the whole data set.
• Example: intrusion detection – a number of computers

keep sending denial-of-service packages to each other.
• Detection of collective outliers:

• Consider not only behavior of individual objects, but also that of groups of objects.
• Need to have the background knowledge on the relationship among data objects, such as a distance or

similarity measure on objects.

Outliers in a Data Set

• A data set may have multiple types of outliers.
• One data tuple may belong to more than one type of outlier.

D. Probst | CS6 | KDDmUe 9. Outlier | Version 333648c SS2025 4



Challenges of Outlier Detection

• Modeling normal objects and outliers properly.
• Hard to enumerate all possible normal behaviors in

an application.
• No clear line between normal data tuples and

outliers.
• Application-specific outlier detection.

• Choice of distance measure among objects and the
model of
relationship among objects are
application-dependent.

• E.g. clinical data: a small deviation could be an
outlier;
while in marketing analysis: larger fluctuations.

• Handling noise in outlier detection.
• Noise may distort the normal objects

and blur the distinction
between normal objects and outliers.

• It may hide outliers and reduce the
effectiveness of outlier detection.

• Understandability.
• Understand why these are outliers:

justification of the detection.
• Specify the degree of an outlier:

the unlikelihood of the object being
generated by a normal mechanism.
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Outlier-Detection Methods



How can we detect outliers?

Two ways to categorize outlier-detection methods:
Grouping according to

1. How many samples are labeled:
I.e. supervised, semi-supervised vs. unsupervised methods.

2. Assumptions regarding normal and abnormal samples.
I.e. statistical, proximity-based, and clustering-based methods.

D. Probst | CS6 | KDDmUe 9. Outlier | Version 333648c SS2025 6



Grouping According to Label Existence (I)

Domain expert labelled all, some, or no samples. Supervised Methods:

• Modeling outlier detection as a classification problem:
Samples examined by domain experts used for training & testing.

• Methods for learning a classifier for outlier detection effectively:
• Model normal objects & report those not matching the model as outliers.
• Model outliers and treat those not matching the model as normal.

• Challenges:
• Imbalanced classes, i.e., outliers are rare:

Boost the outlier class and make up some artificial outliers.
• Catch as many outliers as possible.

Therefore: recall is more important than accuracy
(i.e., not mislabeling normal objects as outliers).
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Grouping According to Label Existence (II)

Unsupervised Methods:
• No labels available.
• Implicit assumptions:

• Normal objects are somewhat “clustered” into multiple groups, each having some distinct features.
• Outlier are expected to be far away from any group of normal objects.

• Adapt clustering methods for unsupervised outlier detection:
1. Find clusters.
2. Samples not falling in any cluster are outliers.

• Challenges:
• Samples outside of clusters may not be outliers.
• Costly to find clusters.
• Hard to distinguish noise from outliers.
• Can’t detect collective outliers effectively.
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Grouping According to Label Existence (III)

Semi-Supervised Methods:
• Only a small set of samples are labeled as normal or as outlier.
• If some labeled normal objects are available:

• Use the labeled examples and the proximate
unlabeled objects to train a model for normal objects.

• Those not fitting the model of normal objects are detected as outliers.

• If only some labeled outliers are available,
that small number may not cover all possible outliers well.
• To improve the quality of outlier detection: get help from models for normal objects learned from

unsupervised methods.
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Grouping Based on Assumption (I)

R

Statistical Methods
• (Also known as model-based methods)
• Assume that the normal data follow some statistical model.

• The data not following the model are outliers.
• Example (right figure):

• First use Gaussian distributionND(x | µ, σ) to model the normal data.
• For each object y in region R, estimateND(y | µ, σ), the probability that y

fits the Gaussian distribution.
• IfND(y | µ, σ) is very low, y is unlikely generated by the Gaussian model, thus an outlier.

• Effectiveness of statistical methods:
• Highly depends on whether the assumption of statistical model holds in the real data.

• There are many kinds of statistical models.
• E.g., parametric vs. non-parametric.
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Grouping Based on Assumption (II)

R

Proximity-Based Methods
An object is an outlier if the nearest neighbors of the object are far away,
i.e., the proximity of the object significantly deviates from the proximity
of most of the other objects in the same data set.

• Example (right figure):
• Model the proximity of an object using its 3 nearest neighbors.
• Objects in region R are substantially different from other objects in the data set.
• Thus the objects in R are outliers.

• Effectiveness of proximity-based methods:
• Highly relies on the proximity measure.
• In some applications, proximity or distance measures cannot be obtained easily.
• Often have a difficulty in finding a group of outliers which are close to each other.

• Two major types of proximity-based outlier detection:
• Distance-based vs. density-based.
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Grouping Based on Assumption (III)

R

Clustering-Based Methods
Normal data belong to large and dense clusters, whereas outliers belong to
small or sparse clusters, or do not belong to any cluster.

• Example (right figure): Two clusters.
• All points not in R form a large cluster.
• The two points in R form a tiny cluster, thus are outliers.

• Many clustering methods:
• Thus also many clustering-based outlier detection methods.

• Clustering is expensive.
• Straightforward adaptation of a clustering method for outlier detection can be costly and does not scale

up well for large data sets.
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Statistical Approaches



Statistical Approaches

• Assumption: Objects in a data set are generated by a stochastic process (a generative model).
• Idea: Learn a generative model fitting the given data set, and then identify the objects in

low-probability regions of the model as outliers.
• Methods divided into two categories:

Parametric Methods
• Assumes that the normal data is generated by

a parametric distribution with parameter θ.
• The probability density function of the

parametric distribution f(x, θ) gives the
probability that object x is generated by the
distribution.

• Small values indicate potential outlier.

Non-Parametric Methods
• Do not assume an a-priori statistical model and

determine the model from the input data.
• Not completely parameter-free, but consider

number and nature of the parameters to be
flexible and not fixed in advance.

• Examples: histogram and kernel-density
estimation.
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Statistical Approaches
Parametric Methods



Detection Based on Normal Distribution (I)

• Univariate data: A data set involving only one attribute or variable.
• Assumption: Data are generated from a normal distribution.
• Learn the parameters from the input data, and identify the points with low probability as

outliers.

Example: Assume data follows a normal distribution.
• Recall: normal distributionN (µ, σ)

• Characterized by two parameters: mean µ, and standard deviation σ.

• Probability density function: f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

• Idea: Estimate parameters µ and σ so that normal distribution fits data as close as possible.
• Question: How to estimate these parameters?→ Maximum likelihood method.
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Excursus: Maximum Likelihood Estimation I

Maximum Likelihood Estimation
Maximum Likelihood Estimation (MLE) estimates parameters of an assumed probability distribution such
that the distribution fits the data as closely as possible.

• Likelihood function L(θ|X) with
• parameter space θ and
• observed data X = {x1, x2, . . . , xn}

describes the joint probability of observed data as a function of the parameters of the assumed
distribution.
• Frequently assumed distribution: Gaussian (normal) distributionN (µ, σ).
• Thus, the likelihood function L(θ|X) with parameter space θ = {µ, σ} is the Gaussian process:

L(θ|X) = L(µ, σ|x1, . . . , xn) =
∏n

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

• Find good estimates for θ such that θ̂ = argmaxθ L(θ|X).
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Excursus: Maximum Likelihood Estimation II

• In the case of a Gaussian distribution: find estimates for µ and σ such that

µ̂ = argmaxµ L(θ|X),
σ̂ = argmaxσ L(θ|X)

• General procedure:
1. Generate two derivatives, with respect to µ and σ, respectively.
2. Solve each equation by setting them equal to zero.

• Instead of taking the derivative directly, we take the log of the likelihood function as this makes it
easier to take derivatives.

lnL(θ|x1, . . . , xn) = lnL(µ, σ|x1, . . . , xn) = ln

(∏n
i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

)
• Logarithm is monotonically increasing, thus satisfying argmaxθ ln(L(θ|X)) = argmaxθ L(θ|X).
• Logarithm turns multiplication

∏
into addition

∑
making derivatives easier to compute.
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Excursus: Maximum Likelihood Estimation III

0. Transform equation:

lnL(µ, σ|x1, . . . , xn) = ln

(∏n
i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

)
= −n

2
ln 2π−n

2
lnσ2− 1

2σ2

∑n
i=1(xi−µ)2

1. To estimate parameters, take the partial derivative with respect to µ and σ:

∂
∂µ ln (L(µ, σ|x1, . . . , xn)) =

1

σ2

n∑
i=1

(xi − µ)

∂
∂σ ln (L(µ, σ|x1, . . . , xn)) = − n

σ + 1
σ3

∑n
i=1(xi − µ)2

2. Then, by setting these equations equals zero, we derive the following likelihood estimates:

mean µ̂ = 1
n

∑n
i=1 xi standard deviation σ̂ =

√
1
n

∑n
i=1(xi − µ)2

Refer to appendix for proof.
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Detection Based on Normal Distribution (II)

Example:
• Average yearly temperatures: {24.0, 28.9, 28.9, 29.0, 29.1, 29.1, 29.2, 29.2, 29.3, 29.4}.
• For these data with n = 10, we have

µ̂ = 28.61, σ̂ =
√

2.29 = 1.51.

• Then the most deviating value 24.0 is 4.61 away form the estimated mean.
• Recall: µ± 3σ contains 99.7% of the data under the assumption of normal distribution.
• µ± 3σ

⇔ µ− 3σ ≤ x ≤ µ+ 3σ⇔ µ−x
σ ≤ 3 ≤ µ+x

σ

• Plugging in the minimum value (24.0) into the equation yields µ−x
σ = 28.61−24

1.51 = 4.61
1.51 = 3.04 > 3

• Probability that 24.0 is generated by a normal distribution is less than 0.15%.
• Each tail to the left and to the right of the 99.7% has 0.15%.

• Hence, 24.0 identified as an outlier.
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The Grubbs’ Test1

Grubbs’ Test
The Grubbs’ Test is a statistical test to detect outlier in a univariate data set under the assumption that this
data set follows a normal distribution. Grubbs’ Test is also known as maximum normed residual test.

• Postulates the following hypotheses:
• H0 : Data set contains no outliers.
• Ha : Data set contains exactly one outlier.

• For a data set {x1, x2, . . . , xn} compute the Grubbs’ test statistic: G = max |xi−x|
s ,

with sample mean x and sample standard deviation s.
• The two-sided test with significance level α to reject the null hypothesis is as follows:

G > N−1√
N

√
t2
α
2N ,N−2

N−2+t2
α
2N ,N−2

where t2
α
2N
,N−2 is the value taken by a t-distribution at a

significance level of α
2N ,

and N is the number of objects in the data set.
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Detection of Multivariate Outliers

• Multivariate data: A data set involving two or more attributes or variables.
• Univariate outlier detection methods can be extended to the multivariate case.
• Central Idea: Transform the multivariate outlier-detection task into a univariate outlier-detection

problem.
• Methods include but not limited to:

1. Mahalanobis distance.
2. χ2 statistic

Beware: Term “Multivariate” Defined Differently Throughout Disciplines

Depending on the discipline of the paper you may find yourself reading, the term multivariate data, though,
maybe misleading. For instance, in probability and statistics, a multivariate random variable is a
column vector X = {x1, x2, . . . , xn}, i. e. univariate data. However, a multivariate time series contains
multiple univariate time series (column vectors).

2Named after Frank E. Grubbs.
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Mahalanobis Distance and χ2 Statistic

Mahalanobis Distance
• Measures the distance between an object x

and the data set’s distribution.
• Defined as

MD(x) =
√

(x− x)T C−1(x− x)

with mean x, and covariance matrix C, and
x = (x1, x2, . . . , xn) where xi is a column
vector at position i .

• Use the Grubbs’ test on this measure to detect
outliers.

χ2 Statistic
• Captures multivariate outliers under the

assumption of a normal distribution.
• For a data set x = (x1, x2, . . . , xn), χ2 statistic

is defined as:

χ2 =
n∑

i=1

(xi − x)2

x

• If χ2 statistic is large, then x is an outlier.
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Using Mixture of Parametric Distributions

C1C3

C2

x

• Assuming data follows a normal distribution is too simple for complex
data distributions.

• Right figure: The objects between the two clusters cannot be captured
as outliers since they are close to the estimated mean.

• Assume data is generated by two normal distributions.
• For any object x in the data set, the probability that x is generated by the mixture of the two distributions
N1(µ1, σ1) andN2(µ2, σ2) is given by

P(x | N1,N2) = fN1(x | µ1, σ1) + fN2(x | µ2, σ2),

where fN1 and fN1 are the probability density functions ofN1 andN2, respectively.
• Use expectation-maximization (EM) algorithm3 to learn the parameters µ1, σ1, µ2, σ2 from the data.
• An object x is an outlier if it does not belong to any cluster.

3Expectation-maximization algorithm is not covered in this lecture. If you are interested, you may take a look at chapter 11 of our reference book titled Data Mining: Concepts and Techniques.
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Statistical Approaches
Non-Parametric Methods



Detection Using Histogram (I)

Non-parametric methods make fewer assumptions about the data, and thus are applicable in more
scenarios.

Outlier detection using histograms:

1. Construct histogram

2. Detect outlier by checking objects against the histogram and
determine if is normal or not.
Example: A transaction with the amount of $7, 500 is an outlier,
since only 0.2%
of the transactions have an amount higher than $5, 000.

D. Probst | CS6 | KDDmUe 9. Outlier | Version 333648c SS2025 23



Detection Using Histogram (II)

Problem:
• Hard to choose an appropriate bin size for histogram.
• Too small bin size→ normal objects in empty/rare bins, false positive.
• Too big bin size→ outliers in some frequent bins, false negative.

Alternatively: Estimate probability density function with Kernel Density Estimation (KDE)
• Given: Univariate data set X = {x1, x2, . . . , xn} that is drawn i. i. d (independent and identically

distributed)

• Its kernel density estimate is f̂h(x) =
1
n

∑n
i=1 Kh(x − xi) =

1
nh

∑n
i=1 K ( x−xi

h ), where

• f̂ is the density function to be estimated,
• h > 0 is a smoothing parameter, also called bandwidth, corresponds to the bin width of the histogram. If

too small, the curve gets too rough, if too large, shape of f̂ is too washed out.
• K is the kernel, a non-negative function, typically standard Gaussian function with µ = 0 and σ = 1.
• Kh is the scaled kernel Kh(x) =

1
h K ( x

h )
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Proximity-Based Approaches



Proximity-Based Approaches

• Assumption: Outliers are far away
• Quantifies how far away objects are from each other by employing a distance measure
• Two types of proximity-based outlier detection methods:

Distance-Based Methods

• Consults the neighborhood.
• Neighborhood defined by a given radius.
• Objects are considered as outlier if its neighborhood

does not contain enough objects.
• Different methods: distance-based with nested loop,

grid-based.

Density-Based Methods

• Investigates the density of an object and
that of its neighbors.

• Object is considered an outlier if density is
lower than that of its neighbors.
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Proximity-Based Approaches
Distance-Based Outlier Detection



Method with a Nested Loop (I)

• Suppose we have:
• a set of data objects D with n objects, and
• a user-specified threshold r with r > 0

• For each object o ∈ D examine the number of other objects in the r -neighborhood of o.
• If most objects in D are far away from o, then o is an outlier.
• Formally: An object o is a DB(r , π)-outlier, iff

||{o′ | d(o, o′) ≤ r}||
||D||

≤ π.

where
• d(o, o′) is a distance function of two objects o and o′

• π with 0 ≤ π ≤ 1 is a fraction threshold.

• Determine if an object o is an outlier by taking a look at the k -nearest neighbor ok where k = ⌈πn⌉
• o is an outlier, if d(o, ok) > r .
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Method with a Nested Loop (II)

Efficient computation: Nested-loop algorithm:
• For every object oi ∈ D calculate distance with

every other object oj ∈ D where i ̸= j .
• Also count the number of objects in the

r -neighborhood of oi .
• Terminate inner loop if πn objects found in

distance r : oi is no DB(r , π)-outlier.
• Otherwise do not terminate: oi is an outlier.

Efficiency:
• O(n2), but linear CPU-time w.r.t. data set size.
• Early termination: small dataset with few

outliers.
• Costly for large dataset not fitting into RAM.

Data: a set of objects D = {o1, . . . , on}, threshold r , fraction
threshold π

Result: DB(r , π)-outlier in D

1 foreach oi ∈ D do
2 count← 0;
3 foreach oj ∈ D do
4 if oi ̸= oj and d(oi , oj) ≤ r then
5 count← count+1;
6 if count≥ πn then

/* oi cannot be a DB(r , π)-outlier */
7 exit inner loop;

8 return set of all DB(r , π)-outlier in D
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Method with a Nested Loop (III)

Why is efficiency still a concern?
• If the complete set of objects cannot be held in main memory,

there is significant cost for I/O swapping.

The major cost:

1. All-Pair-Similarity:
Each object is tested against the whole data set,
why not only against its close neighbors?

2. Iterative Approach:
Objects are checked one by one, why not group by group?

Improvements can be handled by using a grid-based method.
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A Grid-Based Method (I)

• CELL:
• Data space is partitioned into a multi-dimensional grid.
• Each cell is a hyper cube with diagonal length r

2 .
• r -distance threshold parameter.
• l-dimensions: edge of each cell r/(2

√
l) long.

• Level-1 cells:
• Immediately next to cell C.
• For any possible point x in C and

any possible point y in a level-1 cell: d(x, y) ≤ r .
• Level-2 cells:

• One or two cells away from C.
• For any possible point x in cell C and

any point y such that d(x, y) ≥ r , y is in a level-2 cell.

• Example: Given a 2-dimensional data set, the length of each cell edge is r
2
√

2
.
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A Grid-Based Method (II)

Cell Pruning Rules
• Total number of objects in cell C: a.
• Total number of objects in level-1 cells: b1.
• Total number of objects in level-2 cells: b2.

• Level-1 cell pruning rule:
• If a + b1 > ⌈πn⌉, then every object o in C is not a DB(r , π)-outlier, because all objects in C and the

level-1 cells are in the r -neighborhood of o, and there are at least ⌈πn⌉ such objects.
• Level-2 cell pruning rule:

• If a + b1 + b2 < ⌈πn⌉+ 1, then all objects in C are DB(r , π)-outliers, because all of their
r -neighborhoods have less than ⌈πn⌉ other objects.

• Only need to check the objects that cannot be pruned.
• Even for such an object o,

only need to compute the distance between o and the objects in level-2 cells.
• Since beyond level-2, distance from o is more than r .
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Proximity-Based Approaches
Density-Based Outlier Detection



Density-Based Outlier Detection

• Density around outlier object significantly different
• Methods use a relative density of an object against is neighbor.
• This indicates to which degree an object is considered an outlier.
• Local outliers: Outliers compared to their local neighborhoods, not to global data distribution.

Figure on the right:
• Objects o1 and o2 are local outliers to C1, o3 is a global outlier,

but o4 is not an outlier.
• However, distance of o1 and o2 to objects in dense cluster C1

is smaller than average distance in sparse cluster C2.
• Hence, o1 and o2 are not distance-based outliers. o3

o1

o2

C1

C2

o4
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Measure Relative Density

• Use the relative density of an object against its neighbors
as the indicator of the degree of the object being an outlier.

• k -distance of an object o: dk(o).
Distance between o and its k -nearest neighbors.

• Distance d(o, p) between o and its k -nearest neighbor p.
• At least k -objects o′ ∈ D− {o} such that d(o, o′) ≤ d(o, p).
• At most k − 1 objects o′′ ∈ D− {o} such that d(o, o′′) > d(o, p).

• k -distance neighborhood of o:
• Nk(o) = {o′ | o′ ∈ D, d(o, o′) ≤ dk(o)}.
• Nk(o) could be bigger than k

since multiple objects may have identical distance to o.

• Measure local distance by using the average distance from objects in Nk(o).
• Problem: If o has very close neighbors o′, statistical fluctuations of the distance measure can be

undesirable high. Overcome this problem with a reachability distance.
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Reachability Distance

• Reachability distance from o′ to o:

reachdistk(o
′ ← o) = max{dk(o), d(o, o′)},

where k is a user-specified parameter that adds a smoothing effect.
• k specifies the minimum neighborhood to be examined to determine the local density of an object.
• Reachability distance is not symmetric!

reachdistk(o
′ ← o) ̸= reachdistk(o← o′)

• Local reachability density of o:

lrdk(o) =
||Nk(o)||∑

o′∈Nk (o)
reachdistk(o′ ← o)

.
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Local Outlier Factor (LOF)

• LOF is the average of the ratio of the local reachability density of o and
those of o’s k -nearest neighbors.

• The lower lrd and the higher lrd of the k -nearest neighbors of o,
then the higher the LOF value.

• LOF of o is defined as:

LOFk(o) =

∑
o′∈Nk (o)

lrdk (o′)
lrdk (o)

||Nk(o)||
=

∑
o′∈Nk (o)

lrdk(o
′) ·

∑
o′∈Nk (o)

reachdistk(o
′ ← o).

• This captures a local outlier whose local density is relatively low comparing to the local densities of
its k -NN.
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Summary



Summary

• Types of outliers:
• Global, contextual & collective outliers.

• Outlier detection:
• Supervised, semi-supervised, or unsupervised.

• Statistical (or model-based) approaches.
• Proximity-based approaches.
• Not covered here:

• Clustering-based approaches.
• Classification approaches.
• Mining contextual and collective outliers.
• Outlier detection in high dimensional data.
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Any questions about this chapter?

Ask them now or ask them later in our forum:

� https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h
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Appendix



Maximum Likelihood Estimation (MLE)

• Example: Assume a normal distributionN (µ, σ) with probability density function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

• Likelihood function of the normal distribution for a dataset X = {x1, . . . , xn}, therefore, is as follows:

L(µ, σ|x1, . . . , xn) =
∏n

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

• General procedure:
1. Generate two derivatives, with respect to µ and σ, respectively.
2. Solve each equation by setting them equal to zero.

• Instead of taking the derivative directly, we take the log of the likelihood function as this makes it
easier to take derivatives.
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MLE: Log-Transform Equation

lnL(µ, σ|x1, . . . , xn) = ln

(∏n
i=1︸ ︷︷ ︸ 1√

2πσ2
e−

(xi−µ)2

2σ2

)

=
∑n

i=1 ln

(
1√

2πσ2
e−

(xi−µ)2

2σ2︸ ︷︷ ︸
)

=
∑n

i=1

(
ln

(
1√

2πσ2︸ ︷︷ ︸
)
+ ln

(
e−

(xi−µ)2

2σ2︸ ︷︷ ︸))

=
∑n

i=1

(
ln
(
(2πσ2)−

1
2

)
− (xi−µ)2

2σ2 ln e
)

1.

2.

3.a
3.b

1. Log transforms multiplication into
addition.

2. Transform each element in log, that
is convert multiplication to addition.

3. Convert one (a) over square root
and (b) exponent of euler.
Recall:

x−v =
1

xv

v
√

x = x
1
v

ln xv = v ln x
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MLE: Log-Transform Equation

=
∑n

i=1

(
ln
(
(2πσ2)−

1
2︸ ︷︷ ︸)− (xi−µ)2

2σ2 ln e︸︷︷︸)
=

∑n
i=1

(
− 1

2 ln 2πσ2︸︷︷︸− (xi − µ)2

2σ2︸ ︷︷ ︸
)

=
∑n

i=1

(
− 1

2 ln 2π − 1
2 lnσ

2︸︷︷︸− (xi−µ)2

2σ2

)
=

∑n
i=1

(
− 1

2 ln 2π − 1
2 2︸︷︷︸ lnσ − (xi−µ)2

2σ2

)
=

∑n
i=1

(
− 1

2 ln 2π − lnσ − (xi−µ)2

2σ2

)

4.a 4.b

5.a
5.b

6.

7.

4. Convert (a) exponent into multiplication and (b)
remove ln e.
Recall:

ln e = 1

5. (a) Transform multiplication to addition. (b)
Nothing to do to last term.

6. Convert exponent.

7. Simplify equation.

We can now take the derivative w. r. t. µ and σ of:
ln (L(µ, σ|x1, . . . , xn))

= − n
2 ln 2π − n lnσ −

∑n
i=1

(xi−µ)2

2σ2

7.
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MLE: Take Derivative w. r. t. µ

∂
∂µ ln (L(µ, σ|x1, . . . , xn))

= ∂
∂µ(−

n
2 ln 2π)︸ ︷︷ ︸− ∂

∂µ(n lnσ︸ ︷︷ ︸)−
n∑

i=1

∂
∂µ

(xi−µ)2

2σ2︸ ︷︷ ︸
=

∑n
i=1
−2(xi−µ)(−1)

2σ2︸ ︷︷ ︸
=

∑n
i=1

2(xi−µ)
2σ2

=
∑n

i=1
xi−µ
σ2

=
1

σ2

n∑
i=1

(xi − µ)

1. 1. 2.

3.

1. Derivative of this component can be treated as
a constant as it does not contain µ, therefore it
equals to zero.

2. Apply chain rule.

3. Simplify equation.

Recall:
Linearity: (f + g)′ = f ′ + g′

Product Rule: (fg)′ = f ′g + fg′

Quotient:
(

f
g

)′
= f ′g−fg′

g2

Chain Rule: (f(g(x)))′ = f ′(g(x))g′(x)

also denoted as: ∂f
∂x = ∂f

∂g
∂g
∂x
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MLE: Take Derivative w. r. t. σ

∂
∂σ ln (L(µ, σ|x1, . . . , xn))

= ∂
∂σ (−

n
2 ln 2π)︸ ︷︷ ︸− ∂

∂σ (n lnσ︸ ︷︷ ︸)−
n∑

i=1

∂
∂σ

(xi−µ)2

2σ2︸ ︷︷ ︸
= − n

σ−
∑n

i−1
(xi−µ)2

2 (−2)σ−3︸ ︷︷ ︸
= − n

σ +
∑n

i=1(xi − µ)2σ−3︸︷︷︸
= − n

σ +
∑n

i=1
(xi−µ)2

σ3︸ ︷︷ ︸
= − n

σ + 1
σ3

∑n
i=1(xi − µ)2

1. 2. 3.

4.

5.

6.

1. Derivative of this component can be treated as
a constant as it does not contain σ, therefore it
equals to zero.

2. Take derivative.

3. Easier when expressed as (xi−µ)2

2 σ−2. Then
take derivative of σ−2. Recall: (xa)′ = axa−1

4. Two minuses cancel out (minus before sum and
minus of (−2)). Additionally, simplify by cancel
out 2

2 .

5. Put back as denominator.

6. Simplify equation.
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MLE: Two Derivatives w. r. t. µ and σ

Derivatives are:
∂
∂µ ln (L(µ, σ|x1, . . . , xn)) =

1

σ2

n∑
i=1

(xi − µ)

∂
∂σ ln (L(µ, σ|x1, . . . , xn)) = − n

σ + 1
σ3

∑n
i=1(xi − µ)2

To find the estimates of µ and σ, solve these equations by equal them to zero4:

• For µ: 0 = 1
σ2

∑n
i=1(xi − µ)

×σ2

⇔ 0 =
∑n

i=1 xi − µ
+nµ⇔ nµ =

∑n
i=1 xi

× 1
n⇔ µ = 1

n

∑n
i=1 xi

This equals to mean.

• For σ: 0 = − n
σ + 1

σ3

∑n
i=1(xi −µ)2 ×σ⇔ 0 = −n + 1

σ2

∑n
i=1(xi −µ)2 +n⇔ n = 1

σ2

∑n
i=1(xi −µ)2

×σ2

⇔ nσ2 =
∑n

i=1(xi − µ)2
× 1

n⇔ σ2 = 1
n

∑n
i=1(xi − µ)2

√
⇔ σ =

√
1
n

∑n
i=1(xi − µ)2

This equals to standard deviation.

4We want to find the value for with the log functions reaches their maximum. At this point, the slope of these functions equal to zero. Therefore, we equal these functions to zero.
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