
7. Classification

Knowledge Discovery in Databases with Exercises
Dominik Probst, dominik.probst@fau.de
Computer Science 6 (Data Management), Friedrich-Alexander-Universität Erlangen-Nürnberg
Summer semester 2025

Outline

1. Basic Concepts

2. Decision Tree Induction
Information Gain (ID3)
Gain Ratio (C4.5)
Gini Index (CART)

3. Rule-Based Classification

4. Bayes Classification Methods

5. Model Evaluation
Evaluation Metrics
Evaluation Strategies

6. Ensemble Methods

7. Summary

Basic Concepts

Supervised vs. Unsupervised Learning

Supervised Learning
• The training data (observations,

measurements, etc.) are accompanied by
labels indicating the class of the
observations.

• New data is classified based on a model
created from the training data.

Unsupervised Learning
• Class labels of training data are unknown.

Or rather, there are no training data.

• Given a set of measurements,
observations, etc., the goal is to find
classes or clusters in the data.
→ Clustering.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 2

Classification vs. Numerical Prediction

• Classification:
• Predicts categorical class labels (discrete, nominal).
• Constructs a model based on the training set and the values (class labels) in a classifying attribute and

uses it in classifying new data.
• Numerical prediction:

• Models continuous-valued functions.
• I.e. predicts missing or unknown (future) values.

• Typical applications of classification:
• Credit/loan approval: Will it be paid back?
• Medical diagnosis: Is a tumor cancerous or benign?
• Fraud detection: Is a transaction fraudulent or not?
• Web-page categorization: Which category is it such as to categorize it by topic.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 3

Classification – A Two-step Process

1. Model construction: describing a set of predetermined classes:
• Each tuple/sample is assumed to belong to a predefined class, as determined by the class-label

attribute.
• The set of tuples used for model construction is the training set.
• The model is represented as classification rules, decision trees, or mathematical formulae.

2. Model usage, for classifying future or unknown objects:
• Estimate accuracy of the model:

• The known label of test samples is compared with the result from the model.
• Accuracy rate is the percentage of test-set samples that are correctly classified by the model.
• Test set is independent of training set (otherwise overfitting).
• More on evaluation metrics later.

• If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 4

Classification – 1. Model Construction

Training data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
algorithm

Classification rules

if RANK =’Professor’
or YEARS >6
then TENURED =’yes’

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 5

Classification – 1. Model Construction

Training data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
algorithm

Classification rules

if RANK =’Professor’
or YEARS >6
then TENURED =’yes’

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 5

Classification – 1. Model Construction

Training data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
algorithm

Classification rules

if RANK =’Professor’
or YEARS >6
then TENURED =’yes’

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 5

Classification – 2. Model Usage

Testing data

NAME RANK YEARS EXPE. PRED.
Tom Assistant Prof 2 no yes
Merlisa Associate 7 no no
George Professor 5 yes yes
Joseph Assistant Prof 7 yes yes

Classification
rules

Unseen data

(Jeff, Professor, 4)

yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 6

Classification – 2. Model Usage

Testing data

NAME RANK YEARS EXPE. PRED.
Tom Assistant Prof 2 no yes
Merlisa Associate 7 no no
George Professor 5 yes yes
Joseph Assistant Prof 7 yes yes

Classification
rules

Unseen data

(Jeff, Professor, 4)

yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 6

Classification – 2. Model Usage

Testing data

NAME RANK YEARS EXPE. PRED.
Tom Assistant Prof 2 no yes
Merlisa Associate 7 no no
George Professor 5 yes yes
Joseph Assistant Prof 7 yes yes

Classification
rules

Unseen data

(Jeff, Professor, 4)

yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 6

Classification – 2. Model Usage

Testing data

NAME RANK YEARS EXPE. PRED.
Tom Assistant Prof 2 no yes
Merlisa Associate 7 no no
George Professor 5 yes yes
Joseph Assistant Prof 7 yes yes

Classification
rules

Unseen data

(Jeff, Professor, 4)

yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 6

Decision Tree Induction

Decision Tree: An Example

• Training dataset:
buys_computer.

• Resulting tree:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 7

Decision Tree

Decision Tree Induction
Decision tree induction refers to the learning of a decision-tree based on labeled training data.

Decision Tree
A decision tree is a flowchart-like structure consisting of interconnected internal and leaf nodes.

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

Components of a Decision Tree
• Root: topmost node.
• Internal node: test on an attribute.
• Leaf node: holds a class label, also called terminal

node.
• Branch: outcome of a leaf node’s test coupled with

a text. In this example: excellent.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 8

Algorithm for Decision Tree Induction (I)

Construction in a top-down recursive and divide-and-conquer manner.

Input: data partition D, attribute_list,
attribute_selection_method.

Algorithm Sketch build_decision_tree:
1. Create node N.

2. Determine splitting attribute A with attribute_selection_method.

3. Label N with splitting criterion.

4. If the splitting attribute has been fully utilized, remove it from attribute_list.

5. For each outcome of splitting criterion:

• Partition D according to outcome of splitting criterion.
• Grow branches on N for each partition.

6. Return node N

Attribute Types:
Discrete:

A?

a1 av. . .

Discrete & Binary Tree:

A ∈ SA?
yes no

Continuous:

A?
≤split_point >split_point

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 9

Algorithm for Decision Tree Induction (II)

Stopping criteria:
• All samples in D belong to the same class:
⇒ N becomes a leaf.

• Samples in D belong to multiple classes, but attribute_list is empty:
⇒ Create leaf with majority class.

• Partition D is empty:
⇒ Create leaf with majority class.

Decision Tree Algorithm

A detailed algorithm to construct a decision tree is covered in the appendix and in our reference book1.

1J. Han et al., Data Mining: Concepts and Techniques, 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011, ISBN: 0123814790, pp. 332 – 335.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 10

Attribute Selection Methods

Attribute Selection Methods
An attribute selection method is a heuristic to determine the “best” splitting criterion to partition data.

• Also known as splitting rules.
• Provides ranking for each attribute.
• Partition data based on attribute with best score.
• Tree node is labeled with splitting criterion (attribute).

We will discuss three popular attribute selection methods2:

1. Information Gain

2. Gain Ratio

3. Gini Index

2Since this it not even close to an exhaustive list, we list some other popular methods in the appendix.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 11

Decision Tree Induction
Information Gain (ID3)

Information Gain (ID3) (I)

• Partitions reflect least randomness, i. e. impurity.
• Expected information (entropy) needed to classify a tuple in D:

Info(D) = −
m∑

i=1

pi log2(pi)

• pi is the probability that tuple in D belongs to class Ci , estimated by |Ci |
|D| .

• log2 because information is encoded in bits.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 12

Information Gain (ID3) (II)

Calculate information for every attribute in attribute_list and data partition D:

Discrete-valued Attribute
• Attribute A with v distinct values.
• Expected information required to classify tuple

in D based on partitioning by A.
• DA: dataset D partitioned by A,

DA,j : dataset D partitioned by A with distinct
value j .

Continuous-valued Attribute
• Attribute A with v distinct values.
• Order values in increasing order.
• Calculate midpoint of every neighbouring value.
• v − 1 possible split points si =

ai+ai+1

2 .

• Evaluate InfoA(D) for every possible binary
splitting (A ≤ si and A > si).

InfoA(D) =
v∑

j=1

|DA,j |
|DA|

Info(DA,j) InfoA(D) =
|DA≤si |
|DA|

Info(DA≤si) +
|DA>si |
|DA|

Info(DA>si)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 13

Information Gain (ID3) (II)

Calculate information for every attribute in attribute_list and data partition D:

Discrete-valued Attribute
• Attribute A with v distinct values.
• Expected information required to classify tuple

in D based on partitioning by A.
• DA: dataset D partitioned by A,

DA,j : dataset D partitioned by A with distinct
value j .

Continuous-valued Attribute
• Attribute A with v distinct values.
• Order values in increasing order.
• Calculate midpoint of every neighbouring value.
• v − 1 possible split points si =

ai+ai+1

2 .

• Evaluate InfoA(D) for every possible binary
splitting (A ≤ si and A > si).

InfoA(D) =
v∑

j=1

|DA,j |
|DA|

Info(DA,j)

InfoA(D) =
|DA≤si |
|DA|

Info(DA≤si) +
|DA>si |
|DA|

Info(DA>si)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 13

Information Gain (ID3) (II)

Calculate information for every attribute in attribute_list and data partition D:

Discrete-valued Attribute
• Attribute A with v distinct values.
• Expected information required to classify tuple

in D based on partitioning by A.
• DA: dataset D partitioned by A,

DA,j : dataset D partitioned by A with distinct
value j .

Continuous-valued Attribute
• Attribute A with v distinct values.
• Order values in increasing order.
• Calculate midpoint of every neighbouring value.
• v − 1 possible split points si =

ai+ai+1

2 .

• Evaluate InfoA(D) for every possible binary
splitting (A ≤ si and A > si).

InfoA(D) =
v∑

j=1

|DA,j |
|DA|

Info(DA,j) InfoA(D) =
|DA≤si |
|DA|

Info(DA≤si) +
|DA>si |
|DA|

Info(DA>si)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 13

Information Gain (ID3) (III)

Given Info(D) and InfoA(D), Information Gain of each attribute A is calculated as:

Gain(A) = Info(D)− InfoA(D)

Information Gain
The attribute with the highest Information Gain is selected as the splitting attribute.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 14

Information Gain (ID3) - Example (I)

• Target attribute: buys_computer

• Expected Information:

Info(D) = I(9, 5)

= − 9

14
log2(

9

14
)− 5

14
log2(

5

14
)

= 0.94

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 15

Information Gain (ID3) - Example (II)

• Attribute: Age

• Value distribution:
Age Yes No I(Yes,No)
≤ 30 2 3 0.971

31 . . . 40 4 0 0
> 40 3 2 0.971

• Calculation:

Infoage(D) =
5

14
I(2, 3) +

4

14
I(4, 0) +

5

14
I(3, 2)

= 0.694

Gain(age) = Info(D)− Infoage(D)

= 0.94 − 0.694

= 0.246

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 16

Information Gain (ID3) - Example (II)

• Attribute: Age

• Value distribution:
Age Yes No I(Yes,No)
≤ 30 2 3 0.971

31 . . . 40 4 0 0
> 40 3 2 0.971

• Calculation:

Infoage(D) =
5

14
I(2, 3) +

4

14
I(4, 0) +

5

14
I(3, 2)

= 0.694

Gain(age) = Info(D)− Infoage(D)

= 0.94 − 0.694

= 0.246

• Gain of other attributes:
• Gain(income) = 0.029,
• Gain(student) = 0.151,
• Gain(credit_rating) = 0.048.

• Splitting attribute:
Age with Gain(age) = 0.246.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 16

Information Gain (ID3) - Example (II)

• Attribute: Age

• Value distribution:
Age Yes No I(Yes,No)
≤ 30 2 3 0.971

31 . . . 40 4 0 0
> 40 3 2 0.971

• Calculation:

Infoage(D) =
5

14
I(2, 3) +

4

14
I(4, 0) +

5

14
I(3, 2)

= 0.694

Gain(age) = Info(D)− Infoage(D)

= 0.94 − 0.694

= 0.246

• Gain of other attributes:
• Gain(income) = 0.029,
• Gain(student) = 0.151,
• Gain(credit_rating) = 0.048.

• Splitting attribute:
Age with Gain(age) = 0.246.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 16

Information Gain (ID3) - Example (III)

age?
≤30 >40

income student credit_rating buys_computer
high no fair no
high no excellent no
medium no fair no
low yes fair yes
medium yes excellent yes

income student credit_rating buys_computer
high no fair yes
low yes excellent yes
medium no excellent yes
high yes fair yes

31. . . 40

income student credit_rating buys_computer
medium no fair yes
low yes fair yes
low yes excellent no
medium yes fair yes
medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 17

Decision Tree Induction
Gain Ratio (C4.5)

Gain Ratio (C4.5)

• Problem of Information Gain:
• Tends to prefer attributes with large number of distinct values.

• E. g. attribute degree_program with 278 values vs. student_status with 2 values.

• Solution:
• Normalize the Information Gain to get the Gain Ratio (C4.5):

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D|

log2

(
|Dj |
|D|

)
GainRatio(A) =

Gain(A)

SplitInfoA(D)

• Disadvantage: Becomes unstable as SplitInfoA(D) approaches zero.

Gain Ratio
The attribute with the highest Gain Ratio is selected as the splitting attribute.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 18

Gain Ratio (C4.5)

• Problem of Information Gain:
• Tends to prefer attributes with large number of distinct values.

• E. g. attribute degree_program with 278 values vs. student_status with 2 values.

• Solution:
• Normalize the Information Gain to get the Gain Ratio (C4.5):

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D|

log2

(
|Dj |
|D|

)
GainRatio(A) =

Gain(A)

SplitInfoA(D)

• Disadvantage: Becomes unstable as SplitInfoA(D) approaches zero.

Gain Ratio
The attribute with the highest Gain Ratio is selected as the splitting attribute.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 18

Gain Ratio (C4.5) - Example

• Attribute: Age

• Calculation:

Gain(age) =0.246

SplitInfoage(D) =− 5

14
log2

(5

14

)
− 4

14
log2

(4

14

)
− 5

14
log2

(5

14

)
=1.577

GainRatio(age) =
0.246

1.577
=0.156

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 19

Decision Tree Induction
Gini Index (CART)

Gini Index (CART) (I)

• Problem of Information Gain and Gain Ratio:
• Use of logarithm is computationally expensive.

• Solution:
• Use the Gini Index (CART) as an alternative to Information Gain and Gain Ratio.
• Measures the statistical dispersion of a dataset.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 20

Gini Index (CART) (II)

• Measured impurity of partition D is defined as the sum over n classes:

Gini(D) = 1−
n∑

j=1

p2
j

• pj is the non-zero probability that sample in D belongs to class Cj as estimated by |Cj,D|
|D|

Discrete-valued Attribute
• Attribute A with v distinct values.
• Compute all possible subsets of values.
• Compute weighted sum of each partition

tuple (D1 and D2) as follows:

Continuous-valued Attribute
• Order values in increasing order.
• Split the dataset at every midpoint.
• Evaluate GiniA(D) for every possible

binary splitting:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) GiniA(D) =

|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 21

Gini Index (CART) (II)

• Measured impurity of partition D is defined as the sum over n classes:

Gini(D) = 1−
n∑

j=1

p2
j

• pj is the non-zero probability that sample in D belongs to class Cj as estimated by |Cj,D|
|D|

Discrete-valued Attribute
• Attribute A with v distinct values.
• Compute all possible subsets of values.
• Compute weighted sum of each partition

tuple (D1 and D2) as follows:

Continuous-valued Attribute
• Order values in increasing order.
• Split the dataset at every midpoint.
• Evaluate GiniA(D) for every possible

binary splitting:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) GiniA(D) =

|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 21

Gini Index (CART) (II)

• Measured impurity of partition D is defined as the sum over n classes:

Gini(D) = 1−
n∑

j=1

p2
j

• pj is the non-zero probability that sample in D belongs to class Cj as estimated by |Cj,D|
|D|

Discrete-valued Attribute
• Attribute A with v distinct values.
• Compute all possible subsets of values.
• Compute weighted sum of each partition

tuple (D1 and D2) as follows:

Continuous-valued Attribute
• Order values in increasing order.
• Split the dataset at every midpoint.
• Evaluate GiniA(D) for every possible

binary splitting:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 21

Gini Index (CART) (II)

• Measured impurity of partition D is defined as the sum over n classes:

Gini(D) = 1−
n∑

j=1

p2
j

• pj is the non-zero probability that sample in D belongs to class Cj as estimated by |Cj,D|
|D|

Discrete-valued Attribute
• Attribute A with v distinct values.
• Compute all possible subsets of values.
• Compute weighted sum of each partition

tuple (D1 and D2) as follows:

Continuous-valued Attribute
• Order values in increasing order.
• Split the dataset at every midpoint.
• Evaluate GiniA(D) for every possible

binary splitting:

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) GiniA(D) =

|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 21

Gini Index (CART) (III)

• The reduction in impurity is defined as follows:

∆GiniA(D) = Gini(D)− GiniA(D).

Gini Index
The attribute (and partitioning) with the highest reduction in impurity is selected as the splitting attribute.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 22

Gini Index (CART) - Example (I)

• Target attribute: buys_computer

• Measured impurity:

Gini(D) = 1 −
(9

14

)2

−
(5

14

)2

= 0.459

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 23

Gini Index (CART) - Example (II)

• Attribute: Income

• Subsets:

D1 :{low,medium}
D2 :{high}

• Calculation:

Gini(D|i={high}) =Gini(D|i={medium,low})

=
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14

(
1 −

(7

10

)2

−
(3

10

)2
)

+
4

14

(
1 −

(2

4

)2

−
(2

4

)2
)

=0.443

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 24

Gini Index (CART) - Example (II)

• Attribute: Income

• Subsets:

D1 :{low,medium}
D2 :{high}

• Calculation:

Gini(D|i={high}) =Gini(D|i={medium,low})

=
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14

(
1 −

(7

10

)2

−
(3

10

)2
)

+
4

14

(
1 −

(2

4

)2

−
(2

4

)2
)

=0.443

• Reduction in impurity:

∆Ginii={high}(D) =Gini(D)− Gini(D|i={high})

=0.459 − 0.443

=0.016

• Other subsets:
• ∆Ginii={medium}(D) = 0.001
• ∆Ginii={low}(D) = 0.009

• Splitting subset:
• If income has the overall highest

reduction of impurity, then the split is on
{"low","medium"} and {"high"}.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 24

Gini Index (CART) - Example (II)

• Attribute: Income

• Subsets:

D1 :{low,medium}
D2 :{high}

• Calculation:

Gini(D|i={high}) =Gini(D|i={medium,low})

=
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14

(
1 −

(7

10

)2

−
(3

10

)2
)

+
4

14

(
1 −

(2

4

)2

−
(2

4

)2
)

=0.443

• Reduction in impurity:

∆Ginii={high}(D) =Gini(D)− Gini(D|i={high})

=0.459 − 0.443

=0.016

• Other subsets:
• ∆Ginii={medium}(D) = 0.001
• ∆Ginii={low}(D) = 0.009

• Splitting subset:
• If income has the overall highest

reduction of impurity, then the split is on
{"low","medium"} and {"high"}.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 24

Decision Tree Induction
Overview

Attribute Selection Methods Overview

The three methods, in general, return good results, but
• Information Gain:

• Biased towards multi-valued attributes.
• Gain Ratio:

• Tends to prefer unbalanced splits in which one partition is much smaller than the others.
• Gini Index:

• Biased to multi-valued attributes.
• Has difficulty when number of classes is large.
• Tends to favor tests that result in equal-sized partitions and purity in both partitions.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 25

Decision Tree Induction - Overfitting

• Problem:
• Many branches may reflect anomalies due to noise or outliers.
• Overall poor accuracy for unseen samples.

⇒ Overfitting: An induced tree may overfit the training data.

• Solution:
• Pruning: Avoid branches that have little importance.
• Two types of pruning:

1. Prepruning: Stop growing the tree early.
2. Postpruning: Remove branches from a "fully grown" tree.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 26

Decision Tree Induction - Overfitting

• Problem:
• Many branches may reflect anomalies due to noise or outliers.
• Overall poor accuracy for unseen samples.

⇒ Overfitting: An induced tree may overfit the training data.
• Solution:

• Pruning: Avoid branches that have little importance.
• Two types of pruning:

1. Prepruning: Stop growing the tree early.
2. Postpruning: Remove branches from a "fully grown" tree.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 26

Decision Tree Induction - Enhancements

• A lot of research has been done to improve basic decision tree induction algorithms. E.g.:
• Allow for continuous-valued attributes.

• Dynamically define new discrete-valued attributes that partition the values of continuous-valued attributes
into a discrete set of intervals.

• Handle missing attribute values.
• Assign the most common value of the attribute.
• Assign probability to each of the possible values.

• Attribute construction.
• Create new attributes based on existing ones that are sparsely represented.
• This reduces fragmentation, repetition, and replication.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 27

Decision Tree Induction - Scalability

• Problem:
• Basic decision tree algorithms (ID3, C4.5, and CART) are not scalable

(They require the entire dataset to be in memory).
• They are not designed to handle large datasets.

• Solution:
• Extend the basic algorithms to handle large datasets.
• We will take a look at two modifications/methods:

1. RainForest
2. BOAT

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 28

Scalability: RainForest

• Basic Idea:
• Extract all data required for the attribute selection methods
⇒ Store it in a compact data structure.

• Apply the original algorithm to the compact data structure(s).
• Data structure(s):

• AVC-list:
• Attribute
• Value
• Class label

• AVC-set (of an attribute X):
• Aggregated projection of training dataset onto the attribute X with counts of each class label.

• AVC-group (of a node n):
• Set of AVC-sets of all predictor attributes at the node n.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 29

Scalability: RainForest - AVC-set Example

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 30

Scalability: RainForest - AVC-set Example

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 30

Scalability: RainForest - AVC-set Example

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 30

Scalability: RainForest - AVC-set Example

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 30

Scalability: RainForest - AVC-set Example

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 30

Scalability: BOAT

• Basic Idea:
• Use a statistical technique to create several smaller samples (subsets).
• Every sample fits in the memory and is used to induce a decision tree.
• All trees are combined to form a single tree T’.

• Advantages:
• Resulting tree often very close to the tree induced from the entire dataset.
• Requires only two scans of the DB.
• An incremental algorithm:

• Take insertions and deletions of training data and update the decision tree.

BOAT
The full title of BOAT is Bootstrapped Optimistic Algorithm for Tree Construction, which refers to the
underlying statistical technique used: Bootstrapping.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 31

Rule-Based Classification

Basic Concepts

• Rule-based classification is based on a set of IF-THEN rules.
• Each IF-THEN rule consists of two parts:

• IF (antecedent/precondition): a condition or set of conditions that must be satisfied.
• THEN (consequent): the conclusion or action that follows if the IF part is satisfied.

• Example: (one rule)
• IF age≤ 30 AND student = "yes" THEN buys_computer = "yes".

• Very easy to read and understand for humans.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 32

Basic Concepts

• Rule-based classification is based on a set of IF-THEN rules.
• Each IF-THEN rule consists of two parts:

• IF (antecedent/precondition): a condition or set of conditions that must be satisfied.
• THEN (consequent): the conclusion or action that follows if the IF part is satisfied.

• Example: (one rule)
• IF age≤ 30 AND student = "yes" THEN buys_computer = "yes".

• Very easy to read and understand for humans.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 32

Basic Concepts

• Rule-based classification is based on a set of IF-THEN rules.
• Each IF-THEN rule consists of two parts:

• IF (antecedent/precondition): a condition or set of conditions that must be satisfied.
• THEN (consequent): the conclusion or action that follows if the IF part is satisfied.

• Example: (one rule)
• IF age≤ 30 AND student = "yes" THEN buys_computer = "yes".

• Very easy to read and understand for humans.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 32

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg ?
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg ?
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg ?
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg yes
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg yes
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg yes
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg yes
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.

2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Example

• Given is a set of rules:
• IF price< 1500 THEN buy = "yes".
• IF price≥ 1500 AND color = "red" THEN buy = "no".
• IF price≥ 1500 AND location = "Erlangen" THEN buy = "yes".

• The set may be used to classify new tuples:

price color location buy
1349 red Nuremberg yes
2306 red Erlangen ?
1995 green Fuerth ?

• Some scenarios might lead to conflicts:
1. More than one rule is triggered.
2. No rule is triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 33

Potential Solutions

1. More than one rule is triggered: conflict resolution.
• Size ordering:

• Assign the highest priority to the triggered rule that has the "toughest" requirement
(i.e., rule with most used attribute in condition).

• Class-based ordering:
• Decreasing order of prevalence or misclassification cost per class.
• No order of rules within class → disjunction (logical OR) between rules.

• Rule-based ordering (decision list):
• Rules are organized into one long priority list,

according to some measure of rule quality, or by experts.
• Rules must be applied in this particular order to avoid conflict.

2. No rule is triggered.
• Use a fallback/default rule.
• Always evaluated as the last rule, if and only if other rules are not covered by some tuple, i. e. no rules

have been triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 34

Potential Solutions

1. More than one rule is triggered: conflict resolution.
• Size ordering:

• Assign the highest priority to the triggered rule that has the "toughest" requirement
(i.e., rule with most used attribute in condition).

• Class-based ordering:
• Decreasing order of prevalence or misclassification cost per class.
• No order of rules within class → disjunction (logical OR) between rules.

• Rule-based ordering (decision list):
• Rules are organized into one long priority list,

according to some measure of rule quality, or by experts.
• Rules must be applied in this particular order to avoid conflict.

2. No rule is triggered.
• Use a fallback/default rule.
• Always evaluated as the last rule, if and only if other rules are not covered by some tuple, i. e. no rules

have been triggered.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 34

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Extraction from a Decision Tree

• Basic idea:
• Rules are easier to understand than large trees.
• A rule can be created for each path from the root to a leaf.
• Each attribute-value pair along the path forms a condition:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

1. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

2. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

3. IF age= 31 . . . 40
THEN buys_computer = "yes".

4. . . .

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 35

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:

1. Start with an empty set of rules.
2. Find the rule r with the best covering.
3. Remove all tuples covered.
4. Repeat with step 2 until:

• No more tuples left.
• The quality of a rule is below a

threshold.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:

1. Start with an empty set of rules.
2. Find the rule r with the best covering.
3. Remove all tuples covered.
4. Repeat with step 2 until:

• No more tuples left.
• The quality of a rule is below a

threshold.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:
1. Start with an empty set of rules.

2. Find the rule r with the best covering.
3. Remove all tuples covered.
4. Repeat with step 2 until:

• No more tuples left.
• The quality of a rule is below a

threshold.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:
1. Start with an empty set of rules.
2. Find the rule r with the best covering.

3. Remove all tuples covered.
4. Repeat with step 2 until:

• No more tuples left.
• The quality of a rule is below a

threshold.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:
1. Start with an empty set of rules.
2. Find the rule r with the best covering.
3. Remove all tuples covered.

4. Repeat with step 2 until:
• No more tuples left.
• The quality of a rule is below a

threshold.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (I)

• Extracting rules from decision trees is not the only way to learn rules.
• Rules can be learned directly from the training data:

• Rules are learned sequentially.
• Each rule is optimized to cover as many tuples of a given class as possible

while covering as few tuples of other classes as possible.

• Steps of the method:
1. Start with an empty set of rules.
2. Find the rule r with the best covering.
3. Remove all tuples covered.
4. Repeat with step 2 until:

• No more tuples left.
• The quality of a rule is below a

threshold.
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5
Legend:

Class 1
Class 2

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 36

Rule Induction: Sequential Covering Method (II)

• Typical sequential covering algorithms:
• FOIL3, AQ4, CN25, RIPPER6.

3J. R. Quinlan, “Learning logical definitions from relations,” Mach. Learn., vol. 5, pp. 239–266, 1990. DOI: 10.1007/BF00117105. [Online]. Available: https://doi.org/10.1007/BF00117105
4R. S. Michalski et al., “The multi-purpose incremental learning system aq15 and its testing application to three medical domains,” in Proc. AAAI, vol. 1986, 1986, pp. 1–041
5P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine learning, vol. 3, no. 4, pp. 261–283, 1989
6W. W. Cohen et al., “Fast effective rule induction,” in Proceedings of the twelfth international conference on machine learning, 1995, pp. 115–123

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 37

https://doi.org/10.1007/BF00117105
https://doi.org/10.1007/BF00117105

Rule Induction: Sequential Covering Method (II)

• Typical sequential covering algorithms:
• FOIL, AQ, CN2, RIPPER.

• FOIL (First-Order Inductive Learner):
• Based on Information Gain
• Suppose we have two rules:

R : IF condition THEN class = c

R′ : IF condition’ THEN class = c

• pos/neg are # of positive/negative tuples covered by R, pos′/neg′ respectively for R′.
• FOIL assesses the information gained by extending condition’ as

FOIL_Gain = pos′
(
log2

pos′

pos′ + neg′
− log2

pos

pos + neg

)
.

• FOIL favors rules that have high accuracy and cover many positive tuples.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 37

Bayes Classification Methods

Bayesian Classification: Concepts

• Bayesian Classification:
• Statistical classification method.
• Predict class membership probabilities.
• Based on Bayes’ Theorem.

• Our Focus:
• Naïve Bayesian Classification

• Assumes conditional independence of attributes ("naïve").
• Simplification of Bayesian classification.

Bayes’ Theorem3

Bayes’ Theorem describes the probability of an event based on prior knowledge of conditions that might
be related to the event.

3T. Bayes, “An essay towards solving a problem in the doctrine of chances,” Phil. Trans. of the Royal Soc. of London, vol. 53, pp. 370–418, 1763

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 38

Bayesian Classification: Concepts

• Bayesian Classification:
• Statistical classification method.
• Predict class membership probabilities.
• Based on Bayes’ Theorem.

• Our Focus:
• Naïve Bayesian Classification

• Assumes conditional independence of attributes ("naïve").
• Simplification of Bayesian classification.

Bayes’ Theorem3

Bayes’ Theorem describes the probability of an event based on prior knowledge of conditions that might
be related to the event.

3T. Bayes, “An essay towards solving a problem in the doctrine of chances,” Phil. Trans. of the Royal Soc. of London, vol. 53, pp. 370–418, 1763

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 38

Bayesian Classification: Concepts

• Bayesian Classification:
• Statistical classification method.
• Predict class membership probabilities.
• Based on Bayes’ Theorem.

• Our Focus:
• Naïve Bayesian Classification

• Assumes conditional independence of attributes ("naïve").
• Simplification of Bayesian classification.

Bayes’ Theorem3

Bayes’ Theorem describes the probability of an event based on prior knowledge of conditions that might
be related to the event.

3T. Bayes, “An essay towards solving a problem in the doctrine of chances,” Phil. Trans. of the Royal Soc. of London, vol. 53, pp. 370–418, 1763

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 38

Bayesian Classification: Basic Terms

• Let ...
• ... X be a data sample ("evidence").

• The class label shall be unknown.
• ... Ci be the hypothesis that X belongs to class i .

• Then our goal is to determine the Posteriori Probability P(Ci |X):
• The probability that the hypothesis holds given the observed data sample X .

• To determine P(Ci |X), we need to know:
• The Prior Probability P(Ci):

• The overall probability of the class i .
• E.g., X will buy computer, regardless of age, income,

• The Likelihood P(X |Cj):
• The probability of observing the sample X given that the hypothesis holds.
• E.g., given that X buys computer, the probability that X is 31 . . . 40, medium income.

• The Probability of the sample data P(X):
• The probability that sample data is observed.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 39

Bayesian Classification: Basic Terms

• Let ...
• ... X be a data sample ("evidence").

• The class label shall be unknown.
• ... Ci be the hypothesis that X belongs to class i .

• Then our goal is to determine the Posteriori Probability P(Ci |X):
• The probability that the hypothesis holds given the observed data sample X .

• To determine P(Ci |X), we need to know:
• The Prior Probability P(Ci):

• The overall probability of the class i .
• E.g., X will buy computer, regardless of age, income,

• The Likelihood P(X |Cj):
• The probability of observing the sample X given that the hypothesis holds.
• E.g., given that X buys computer, the probability that X is 31 . . . 40, medium income.

• The Probability of the sample data P(X):
• The probability that sample data is observed.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 39

Bayesian Classification: Basic Terms

• Let ...
• ... X be a data sample ("evidence").

• The class label shall be unknown.
• ... Ci be the hypothesis that X belongs to class i .

• Then our goal is to determine the Posteriori Probability P(Ci |X):
• The probability that the hypothesis holds given the observed data sample X .

• To determine P(Ci |X), we need to know:
• The Prior Probability P(Ci):

• The overall probability of the class i .
• E.g., X will buy computer, regardless of age, income,

• The Likelihood P(X |Cj):
• The probability of observing the sample X given that the hypothesis holds.
• E.g., given that X buys computer, the probability that X is 31 . . . 40, medium income.

• The Probability of the sample data P(X):
• The probability that sample data is observed.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 39

Bayesian Classification: Posteriori Probability

• The Posteriori Probability P(Ci |X) follows from the Bayes’ Theorem:

P(Ci |X) =
P(X |Ci)P(Ci)

P(X)
.

The Maximum Posteriori Probability

Since the posteriori probability P(Ci |X) is the basically the probability that X belongs to class Ci , we want
to find the class Ci that maximizes this probability. X is classified as belonging to this class.

• Since P(X) is constant for all classes, we only have to maximize:

P(X |Ci)P(Ci).

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 40

Bayesian Classification: Posteriori Probability

• The Posteriori Probability P(Ci |X) follows from the Bayes’ Theorem:

P(Ci |X) =
P(X |Ci)P(Ci)

P(X)
.

The Maximum Posteriori Probability

Since the posteriori probability P(Ci |X) is the basically the probability that X belongs to class Ci , we want
to find the class Ci that maximizes this probability. X is classified as belonging to this class.

• Since P(X) is constant for all classes, we only have to maximize:

P(X |Ci)P(Ci).

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 40

Bayesian Classification: Posteriori Probability

• The Posteriori Probability P(Ci |X) follows from the Bayes’ Theorem:

P(Ci |X) =
P(X |Ci)P(Ci)

P(X)
.

The Maximum Posteriori Probability

Since the posteriori probability P(Ci |X) is the basically the probability that X belongs to class Ci , we want
to find the class Ci that maximizes this probability. X is classified as belonging to this class.

• Since P(X) is constant for all classes, we only have to maximize:

P(X |Ci)P(Ci).

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 40

Bayesian Classification: Likelihood

• Naïve Bayesian Classification:
• Assumption: All attributes are conditionally independent.
• I.e. no dependence relation between attributes (which is "naïve").

P(X |Ci) =
∏n

k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• Greatly reduces the computation cost.

Categorical Attribute
• P(xk |Ci) is the number of tuples in Ci

having value xk for Ak divided by |Ci,D|
(the number of tuples of Ci in D):

Continuous-valued Attribute
• P(xk |Ci) is usually computed based on

Gaussian distribution with a mean µ and
standard deviation σ:

P(xk |Ci) =
|{t ∈ Ci : t.Ak = xk}|

|Ci,D|
G(x, µ, σ) =

1√
2πσ

e− (x−µ)2

2σ2

P(xk |Ci) = G(xk , µCi , σCi)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 41

Bayesian Classification: Likelihood

• Naïve Bayesian Classification:
• Assumption: All attributes are conditionally independent.
• I.e. no dependence relation between attributes (which is "naïve").

P(X |Ci) =
∏n

k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• Greatly reduces the computation cost.

Categorical Attribute
• P(xk |Ci) is the number of tuples in Ci

having value xk for Ak divided by |Ci,D|
(the number of tuples of Ci in D):

Continuous-valued Attribute
• P(xk |Ci) is usually computed based on

Gaussian distribution with a mean µ and
standard deviation σ:

P(xk |Ci) =
|{t ∈ Ci : t.Ak = xk}|

|Ci,D|
G(x, µ, σ) =

1√
2πσ

e− (x−µ)2

2σ2

P(xk |Ci) = G(xk , µCi , σCi)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 41

Bayesian Classification: Likelihood

• Naïve Bayesian Classification:
• Assumption: All attributes are conditionally independent.
• I.e. no dependence relation between attributes (which is "naïve").

P(X |Ci) =
∏n

k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• Greatly reduces the computation cost.

Categorical Attribute
• P(xk |Ci) is the number of tuples in Ci

having value xk for Ak divided by |Ci,D|
(the number of tuples of Ci in D):

Continuous-valued Attribute
• P(xk |Ci) is usually computed based on

Gaussian distribution with a mean µ and
standard deviation σ:

P(xk |Ci) =
|{t ∈ Ci : t.Ak = xk}|

|Ci,D|

G(x, µ, σ) =
1√
2πσ

e− (x−µ)2

2σ2

P(xk |Ci) = G(xk , µCi , σCi)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 41

Bayesian Classification: Likelihood

• Naïve Bayesian Classification:
• Assumption: All attributes are conditionally independent.
• I.e. no dependence relation between attributes (which is "naïve").

P(X |Ci) =
∏n

k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• Greatly reduces the computation cost.

Categorical Attribute
• P(xk |Ci) is the number of tuples in Ci

having value xk for Ak divided by |Ci,D|
(the number of tuples of Ci in D):

Continuous-valued Attribute
• P(xk |Ci) is usually computed based on

Gaussian distribution with a mean µ and
standard deviation σ:

P(xk |Ci) =
|{t ∈ Ci : t.Ak = xk}|

|Ci,D|
G(x, µ, σ) =

1√
2πσ

e− (x−µ)2

2σ2

P(xk |Ci) = G(xk , µCi , σCi)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 41

Bayesian Classification: Example (I)

• Target attribute: buys_computer

• Data sample:

X = (age ≤ 30,

income = ”medium”,

student = ”yes”,

credit_rating = ”fair”)

• Prior Probability P(Ci):

P(yes) =

9

14
≈ 0.643

P(no) =

5

14
≈ 0.357

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 42

Bayesian Classification: Example (I)

• Target attribute: buys_computer

• Data sample:

X = (age ≤ 30,

income = ”medium”,

student = ”yes”,

credit_rating = ”fair”)

• Prior Probability P(Ci):

P(yes) =

9

14
≈ 0.643

P(no) =

5

14
≈ 0.357

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 42

Bayesian Classification: Example (I)

• Target attribute: buys_computer

• Data sample:

X = (age ≤ 30,

income = ”medium”,

student = ”yes”,

credit_rating = ”fair”)

• Prior Probability P(Ci):

P(yes) =

9

14
≈ 0.643

P(no) =

5

14
≈ 0.357

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 42

Bayesian Classification: Example (I)

• Target attribute: buys_computer

• Data sample:

X = (age ≤ 30,

income = ”medium”,

student = ”yes”,

credit_rating = ”fair”)

• Prior Probability P(Ci):

P(yes) =
9

14
≈ 0.643

P(no) =

5

14
≈ 0.357

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 42

Bayesian Classification: Example (I)

• Target attribute: buys_computer

• Data sample:

X = (age ≤ 30,

income = ”medium”,

student = ”yes”,

credit_rating = ”fair”)

• Prior Probability P(Ci):

P(yes) =
9

14
≈ 0.643

P(no) =
5

14
≈ 0.357

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 42

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =

2

9
≈ 0.222

P(age ≤ 30|no) =

3

5
= 0.6

P(income = ”medium”|yes) =

4

9
≈ 0.444

P(income = ”medium”|no) =

2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =

2

9
≈ 0.222

P(age ≤ 30|no) =

3

5
= 0.6

P(income = ”medium”|yes) =

4

9
≈ 0.444

P(income = ”medium”|no) =

2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =

3

5
= 0.6

P(income = ”medium”|yes) =

4

9
≈ 0.444

P(income = ”medium”|no) =

2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =

4

9
≈ 0.444

P(income = ”medium”|no) =

2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =

2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =

5

9
≈ 0.556

P(student = ”yes”|no) =

1

5
= 0.2

P(credit_rating = ”fair”|yes) =

6

9
≈ 0.667

P(credit_rating = ”fair”|no) =

2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) =

0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) =

0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci):

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) =

0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci):

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci):

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci)
a:

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

aReminder: Calculating the numerator of the posterior probability is sufficient to classify X

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci)
a:

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

aReminder: Calculating the numerator of the posterior probability is sufficient to classify X

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci)
a:

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:

• X belongs to class C1

(buys_computer = yes)

aReminder: Calculating the numerator of the posterior probability is sufficient to classify X

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Example (II)

• Likelihood(s) P(Xk |Ci):

P(age ≤ 30|yes) =
2

9
≈ 0.222

P(age ≤ 30|no) =
3

5
= 0.6

P(income = ”medium”|yes) =
4

9
≈ 0.444

P(income = ”medium”|no) =
2

5
= 0.4

P(student = ”yes”|yes) =
5

9
≈ 0.556

P(student = ”yes”|no) =
1

5
= 0.2

P(credit_rating = ”fair”|yes) =
6

9
≈ 0.667

P(credit_rating = ”fair”|no) =
2

5
= 0.4

• Likelihood(s) P(X |Ci):

P(X |yes) = 0.222 · 0.444 · 0.556 · 0.667 ≈ 0.037

P(X |no) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019

• Calculate P(X |Ci) · P(Ci)
a:

P(X |yes) · P(yes) = 0.024.

P(X |no) · P(no) = 0.007.

• Classification Result:
• X belongs to class C1

(buys_computer = yes)

aReminder: Calculating the numerator of the posterior probability is sufficient to classify X

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 43

Bayesian Classification: Problem

Zero-Probability Problem

Our naïve Bayes classifier performs poorly if any of the conditional probabilities any of the conditional
probabilities P(xk |Ci) is zero, as this causes the entire product of probabilities to become zero.

• Example:
• income = "low" (0 tuples), "medium" (990 tuples), "high" (10 tuples).

• Solution:
• Use Laplacian correction (or Laplacian estimator):

• Add 1 to each case:

P(income = ”low”) =
1

1003

P(income = ”medium”) =
991

1003

P(income = ”high”) =
11

1003

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 44

Bayesian Classification: Problem

Zero-Probability Problem

Our naïve Bayes classifier performs poorly if any of the conditional probabilities any of the conditional
probabilities P(xk |Ci) is zero, as this causes the entire product of probabilities to become zero.

• Example:
• income = "low" (0 tuples), "medium" (990 tuples), "high" (10 tuples).

• Solution:
• Use Laplacian correction (or Laplacian estimator):

• Add 1 to each case:

P(income = ”low”) =
1

1003

P(income = ”medium”) =
991

1003

P(income = ”high”) =
11

1003

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 44

Bayesian Classification: Problem

Zero-Probability Problem

Our naïve Bayes classifier performs poorly if any of the conditional probabilities any of the conditional
probabilities P(xk |Ci) is zero, as this causes the entire product of probabilities to become zero.

• Example:
• income = "low" (0 tuples), "medium" (990 tuples), "high" (10 tuples).

• Solution:
• Use Laplacian correction (or Laplacian estimator):

• Add 1 to each case:

P(income = ”low”) =
1

1003

P(income = ”medium”) =
991

1003

P(income = ”high”) =
11

1003

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 44

Bayesian Classification: Summary

• Advantages of the Naïve Bayes Classifier:
• Easy to implement.
• Good results obtained in most of the cases.

• Disadvantages of the Naïve Bayes Classifier:
• Assumption: class conditional independence, therefore loss of accuracy.
• Practically, dependencies exist among most variables.

• Cannot be modeled by Naïve Bayesian Classifier.
• How to deal with these dependencies?

→ Bayesian Belief Networks (not part of KDD4).

4More info in the reference book (Chapter 9.1): J. Han et al., Data Mining: Concepts and Techniques, 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011, ISBN: 0123814790

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 45

Model Evaluation

Model Evaluation

• Classification models might perform differently depending on the use case.
⇒ Model evaluation is crucial to select the best model for a specific task.

• Model evaluation can be split into two parts:
• Evaluation metrics:

What metric is important for the task?
• Evaluation strategies:

How to tackle the evaluation? E.g. how to split the data into training and test sets?

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 46

Model Evaluation
Evaluation Metrics

Confusion Matrix

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Confusion Matrix:
• Summarizes the results of a classification model.
• Shows the number of correct and incorrect predictions for each class.
• Correctly classified tuples:

• True Positives (TP): Positive tuples correctly classified as positive.
• True Negatives (TN): Negative tuples correctly classified as negative.

• Incorrectly classified tuples:
• False Positives (FP): Negative tuples incorrectly classified as positive.
• False Negatives (FN): Positive tuples incorrectly classified as negative.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 47

Evaluation Metrics: Accuracy and Error Rate

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Accuracy:

• Percentage of correctly classified tuples.

• Error Rate:

• Inverse of accuracy, i.e. percentage of
incorrectly classified tuples.

Accuracy =
TP + TN

P + N
Error Rate = 1− Accuracy

=
FP + FN

P + N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 48

Evaluation Metrics: Accuracy and Error Rate

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Accuracy:
• Percentage of correctly classified tuples.

• Error Rate:

• Inverse of accuracy, i.e. percentage of
incorrectly classified tuples.

Accuracy =
TP + TN

P + N

Error Rate = 1− Accuracy

=
FP + FN

P + N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 48

Evaluation Metrics: Accuracy and Error Rate

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Accuracy:
• Percentage of correctly classified tuples.

• Error Rate:
• Inverse of accuracy, i.e. percentage of

incorrectly classified tuples.

Accuracy =
TP + TN

P + N
Error Rate = 1− Accuracy

=
FP + FN

P + N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 48

Evaluation Metrics: Sensitivity and Specificity

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Sensitivity:

• True positive rate.

• Specificity:

• True negative rate.

Sensitivity =
TP

P
Specificity =

TN

N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 49

Evaluation Metrics: Sensitivity and Specificity

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Sensitivity:
• True positive rate.

• Specificity:

• True negative rate.

Sensitivity =
TP

P

Specificity =
TN

N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 49

Evaluation Metrics: Sensitivity and Specificity

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Sensitivity:
• True positive rate.

• Specificity:
• True negative rate.

Sensitivity =
TP

P
Specificity =

TN

N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 49

Evaluation Metrics: Precision and Recall

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Precision:

• Measure of exactness.

• Recall:

• Measure of completeness.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

= Sensitivity

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 50

Evaluation Metrics: Precision and Recall

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Precision:
• Measure of exactness.

• Recall:

• Measure of completeness.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

= Sensitivity

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 50

Evaluation Metrics: Precision and Recall

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Precision:
• Measure of exactness.

• Recall:
• Measure of completeness.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

= Sensitivity

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 50

Evaluation Metrics: Precision and Recall

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Precision:
• Measure of exactness.

• Recall:
• Measure of completeness.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
= Sensitivity

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 50

Evaluation Metrics: Fβ and F1 Measure

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Fβ Measure:

• Combining precision and recall.
• Gives β-times more weight to precision.
• β > 1: Minimize false positives.
• β < 1: Minimize false negatives.

• F1 Measure:

• Harmonic mean between the measures.
• Equal weight to both measures.

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
F1 =

2× Precision× Recall

Precision + Recall

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 51

Evaluation Metrics: Fβ and F1 Measure

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Fβ Measure:
• Combining precision and recall.
• Gives β-times more weight to precision.
• β > 1: Minimize false positives.
• β < 1: Minimize false negatives.

• F1 Measure:

• Harmonic mean between the measures.
• Equal weight to both measures.

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall

F1 =
2× Precision× Recall

Precision + Recall

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 51

Evaluation Metrics: Fβ and F1 Measure

Predicted Class
C1 ¬C1 Total

C1 TP FN P
True Class ¬C1 FP TN N

Total P’ N’ P+N

• Fβ Measure:
• Combining precision and recall.
• Gives β-times more weight to precision.
• β > 1: Minimize false positives.
• β < 1: Minimize false negatives.

• F1 Measure:
• Harmonic mean between the measures.
• Equal weight to both measures.

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
F1 =

2× Precision× Recall

Precision + Recall

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 51

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix:

Predicted Class
Cat ¬Cat Total

Cat TP FN P
True Class ¬Cat FP TN N

Total P’ N’ P+N

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat TP FN P
True Class ¬Cat FP TN N

Total P’ N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 FN P
True Class ¬Cat FP TN N

Total P’ N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 FN P
True Class ¬Cat FP TN N

Total P’ N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat FP TN N

Total P’ N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat FP TN N

Total P’ N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 TN N

Total 4 N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 TN N

Total 4 N’ P+N

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (I)

• Evaluation results of a classification model:

True Class Cat Dog Fox Cat Cat Hen Cat Cat Dog Fox
Predicted Class Cat Dog Cat Fox Cat Dog Cat Dog Fox Fox

• Resulting confusion matrix5:

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

5We want to evaluate the classification model with regard to the class Cat

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 52

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Accuracy =
TP + TN

P + N

=

3 + 4

5 + 5
=

7

10
= 70%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat (TP)3 2 (P)5
True Class ¬Cat 1 (TN)4 (N)5

Total 4 6 10

Calculations: Results:

Accuracy =
TP + TN

P + N

=
3 + 4

5 + 5
=

7

10
= 70%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Error Rate =
FP + FN

P + N

=

1 + 2

5 + 5
=

3

10
= 30%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 (FN)2 (P)5
True Class ¬Cat (FP)1 4 (N)5

Total 4 6 10

Calculations: Results:

Error Rate =
FP + FN

P + N

=
1 + 2

5 + 5
=

3

10
= 30%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Sensitivity =
TP

P

=

3

5
= 60%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat (TP)3 2 (P)5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Sensitivity =
TP

P

=
3

5
= 60%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Specificity =
TN

N

=

4

5
= 80%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 (TN)4 (N)5

Total 4 6 10

Calculations: Results:

Specificity =
TN

N

=
4

5
= 80%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Precision =
TP

TP + FP

=

3

3 + 1
=

3

4
= 75%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat (TP)3 2 5
True Class ¬Cat (FP)1 4 5

Total 4 6 10

Calculations: Results:

Precision =
TP

TP + FP

=
3

3 + 1
=

3

4
= 75%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Recall =
TP

TP + FN

=

3

3 + 2
=

3

5
= 60%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat (TP)3 (FN)2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

Recall =
TP

TP + FN

=
3

3 + 2
=

3

5
= 60%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

F1 =
2 · Precision · Recall

Precision + Recall

=

2 · 0.75 · 0.6
0.75 + 0.6

≈ 0.6667 ≈ 67%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Evaluation Metrics: Example (II)

Predicted Class
Cat ¬Cat Total

Cat 3 2 5
True Class ¬Cat 1 4 5

Total 4 6 10

Calculations: Results:

F1 =
2 · Precision · Recall

Precision + Recall

=
2 · 0.75 · 0.6
0.75 + 0.6

≈ 0.6667 ≈ 67%

Accuracy = 70%

Error Rate = 30%

Sensitivity = 60%

Specificity = 80%

Precision = 75%

Recall = 60%

F1 ≈ 67%

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 53

Model Evaluation
Evaluation Strategies

Evaluation Strategies

• We will take a look at two types of evaluation strategies:
• Methods to split data into training and test sets:

1. Holdout method
2. Cross validation

• Methods to compare classification models and their settings:
1. Receiver Operating Characteristics (ROC) curve

• Of course, there are many many more evaluation strategies

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 54

Evaluation Strategies: Holdout Method

• Easy way to split a dataset: The Holdout Method
• Randomly assign tuples into two independent sets:

• Training set (E.g., 2/3) for model construction.
• Test set (E.g., 1/3) for accuracy estimation.

• Random sampling: a variation of holdout that repeats holdout k times.
• Create an average accuracy over all experiments.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 55

Evaluation Strategies: Cross Validation

• More robust than holdout method:
Cross Validation

• In this case: k -fold cross validation
• Randomly partition the data into k

mutually exclusive subsets (folds).
• At each iteration, use one fold as test

set and the others as training set.
• Average accuracy of all iterations.

Example: k -fold cross validation with k = 5

← Total Number of Tuples−→
Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Training Validation

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 56

Evaluation Strategies: ROC Curve

• Receiver Operating Characteristics (ROC)
curve:
• Visualizes the performance of a classification

model:
• Shows the performance of a model at

different settings/thresholds.
• Plots the True Positive Rate (TPR)

against the False Positive Rate (FPR).
• Shows the trade-off between sensitivity and

specificity.
• The closer the curve is to the top-left corner,

the better the model.
⇒ The area under the ROC curve (AUC) is
a measure of the model’s accuracy.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 57

Ensemble Methods

Ensemble Methods

Ensemble Method
An ensemble method creates a composite model that consists of several models to form one model.

• Basic Idea:
• Use multiple models to improve classification accuracy.
• The final prediction is made by combining the predictions of all models.

• Popular methods:
• Bagging
• Boosting

• Popular algorithm: AdaBoost
⇒ More on that in the appendix. 6

• Random Forest
• Algorithm specialized on decision trees

⇒ More on that in the appendix. 7

6Not part of the exam.
7Not part of the exam.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 58

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote

2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Bagging

• Basic Idea:
• Multiple models classify the same tuple.
• The bagged classifier collects results.
• The class with the most votes is

returned as the final prediction.

• Continuous-valued Attributes:
• Multiple models predict the same tuple.
• The bagged regressor collects results.
• The final prediction is the average of all

predictions.

Tuple T

Bagged Classifier

Classifier 1

Classifier 2

Classifier 3

Yes

No

Yes

Vote
2×Yes
1×No

Yes

Yes

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 59

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data

Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data

Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data Classifier 1

Weighted Data

Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data Classifier 1

Weighted Data Classifier 2

Weighted Data

Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted ClassifierBoosted Classifier

Original Data Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted Classifier

Boosted Classifier

Original Data Classifier 1

Weighted Data Classifier 2

Weighted Data Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted Classifier

Boosted Classifier

Original Data

Classifier 1

Weighted Data

Classifier 2

Weighted Data

Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Boosting

• Training:
• Classifiers are iteratively learned.
• After a classifier is learned, the weights

of the training tuples are updated.
⇒ The next classifier pays more
attention to the misclassified tuples.

• Predictions:
• All models classify the same tuple.
• The boosted classifier collects results.
• The weight of each classifier’s vote is a

function of its accuracy.

Boosted Classifier

Boosted Classifier

Original Data

Classifier 1

Weighted Data

Classifier 2

Weighted Data

Classifier 3

Tuple T

Yes

No

Yes

Vote
0.15×Yes
0.75×No
0.10×Yes

No

No

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 60

Summary

Summary

• Classification:
• A form of data analysis that extracts models describing important data classes.

• Effective and scalable methods:
• Decision-tree induction, rule-based classification, and naïve Bayesian classification.

• Evaluation metrics:
• Accuracy, sensitivity, specificity, precision, recall, and Fβ -measure.

• Evaluation strategies:
• Holdout, cross-validation, and ROC-curve analysis.

• Ensemble methods:
• Boosting and Bagging.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 61

Any questions about this chapter?

Ask them now or ask them later in our forum:

� https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 62

https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h
https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h

Appendix

Appendix
Decision Tree Induction

Basic Decision Tree Algorithm

Data:
• Training dataset D containing tuples with their associated class

labels;
• attribute_list, the set of candidate attributes;
• attribute_selection_method, a method to determine the

splitting criterion that “best” partitions the data tuples into
individual classes. The criterion consists of a
splitting_attribute, and possibly, either a split_point or
splitting_subset.

Result: A decision tree.

1 create a node N;
2 if tuples in D are all of the same class C then
3 return N as a leaf node labeled with the class C;

4 if attribute_list is empty then
/* Majority voting */

5 majority_class← determine majority class in D;
6 return N as a leaf node labeled with majority_class;

/* apply attribute_selection_method to find the

“best” splitting_criterion */

7 splitting_criterion← attribute_selection_method(D,
attribute_list);

8 label node N with splitting_criterion;
9 if (splitting_attribute is discrete-valued and multiway splits

allowed) or attribute value has only one unique value then
// remove splitting_attribute

10 attribute_list← attribute_list - splitting_attribute;

11 foreach outcome j of splitting_criterion do
/* partition the tuples and grow subtrees for

each partition */
12 Dj ← partition D to satisfy outcome j ;
13 if Dj is empty then
14 attach a leaf labeled with the majority class in D to node N;

15 else
16 attach the node return by build_decision_tree(Dj ,

attribute_list) to node N;

17 return N;

Algorithm 1: build_decision_tree. Generate a decision tree from training tuples in data partition D.
D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 63

Other Attribute Selection Methods

• CHAID:
• A popular decision tree algorithm, measure based on χ2 test for independence.

• C-SEP:
• Performs better than Information Gain and Gini Index in certain cases.

• G-statistic:
• Has a close approximation to χ2 distribution.

• MDL (Minimal Description Length) principle:
• I.e. the simplest solution is preferred.
• The best tree is the one that requires the fewest number of bits to both (1) encode the tree and (2)

encode the exceptions to the tree.
• Multivariate splits:

• Partitioning based on multiple variable combinations.
• CART: finds multivariate splits based on a linear combination of attributes.

• Which Attribute Selection Method is the best?
• Most give good results, none is significantly superior to others.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 64

Appendix
Evaluation: Bootstrap and Statistical Significance

Evaluation Strategy: Bootstrap

Bootstrap samples training data uniformly with replacement.
Several bootstrap methods exists, yet a common one is .632 bootstrap.

• Data set with d tuples is sampled d times - uniformly with replacement.
• Uniformly = every tuple has the same probability (1

d) for selection.
• With replacement = High change a tuple is selected more than once.
• Not selected tuples will form the test set.
• Probability of not being chosen is 1− 1

d . Selecting d times: (1− 1
d)

d .
With a large data set it approaches e−1 = 0.368.

• Thus, on average 63.2% of tuples are selected as the training set.
• Sampling procedure is repeated k times.

Calculate accuracy in every iteration as follows:

Acc(M) =
1

k

k∑
i=1

0.632 · Acc(Mi)test_set + 0.368 · Acc(Mi)train_set.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 65

Evaluating Classifier Accuracy: Bootstrap (II)

• Suppose we have 2 classifiers, M1 and M2, which one is better?
• Use 10-fold cross-validation to obtain err(M1) and err(M2).

• Recall: error rate is 1− accuracy(M).
• Mean error rates:

• Just estimates of error on the true population of future data cases.
• What if the difference between the 2 error rates is just attributed to chance?

• Use a test of statistical significance.
• Obtain confidence limits for our error estimates.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 66

Evaluating Classifier Accuracy: Null Hypothesis

• Perform k -fold cross-validation with k = 10.
• Assume samples follow a t-distribution with k − 1 degrees of freedom.
• Use t-test

• Student’s t-test.
• Null hypothesis:

• M1 and M2 are the same.
• If we can reject the null hypothesis, then

• Conclude that difference between M1 and M2 is statistically significant.
• Obtain confidence limits for our error estimates.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 67

Estimating Confidence Intervals (I)

• If only one test set available: pairwise comparison:
• For i-th round of 10-fold cross-validation, the same cross partitioning is used to obtain err(M1)i and

err(M2)i .
• Average over 10 rounds to get err(M1) and err(M2).
• t-test computes t-statistic with k − 1 degrees of freedom:

t = err(M1)−err(M2)
var(M1−M2)√

k

,

• where

var(M1 − M2) =
1
k

∑k
i=1 [err(M1)i − err(M2)i − (err(M1)− err(M2))]

2
.

• If two test sets available: use unpaired t-test:

var(M1 − M2) =
√

var(M1)
k1

+ var(M2)
k2

,

where k1 & k2 are # of cross-validation samples used for M1 & M2, respectively.
D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 68

Estimating Confidence Intervals (II)

• Symmetrical.
• Significance level:

• E.g., sig = 0.05 or 5% means M1 & M2 are
significantly different for 95% of population.

• Confidence limit: z = sig
2 .

Area
2

Area
2

−t t

t

Area in One Tail1

0.100 0.050 0.005
Area in Two Tails1

df/α 0.200 0.100 0.010
1 3.078 6.314 63.657
2 1.886 2.920 9.925
3 1.638 2.353 5.841
4 1.533 2.132 4.604
5 1.476 2.015 3.707
6 1.440 1.943 3.499
7 1.415 1.895 3.355
8 1.397 1.860 3.250
9 1.372 1.833 3.169

1Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 69

https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

Estimating Confidence Intervals (III)

Are M1 and M2 significantly different?
• Compute t . Select significance level (E.g., sig = 5%).
• Consult table for t-distribution:

• t-distribution is symmetrical:
• Typically upper % points of distribution shown.

• Find critical value c corresponding to k − 1 degrees of freedom (here, 9)
• and for confidence limit z = sig

2 (here, 0.025).
• =⇒ Here, critical value c = 2.262

• If t > c or t < −c, then t value lies in rejection region:
• Reject null hypothesis that mean error rates of M1 and M2 are equal.
• Conclude: statistically significant difference between M1 and M2.

• Otherwise, conclude that any difference is chance.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 70

Appendix
Ensemble Methods: AdaBoost and Random Forests

AdaBoost ("Adaptive Boosting"8): Training

• Given a data set D of d class-labeled tuples: (x1, y1), . . . , (xd , yd) with yd ∈ Y = {1, . . . , c}.
• Initialize empty lists to hold information per classifier: w,β,M← empty list.
• Initialize weights for first classifier to hold same probability for each tuple: w1

j ← 1
d

• Generate K classifiers in K iterations. At iteration k ,

1. Calculate “normalized” weights: pk = wk∑d
j=1 w i

j

2. Sample dataset with replacement according to pk to form training set Dk .
3. Derive classification model Mk from Dk .
4. Calculate error εk by using Dk as a test set as follows: εk =

∑d
j=1 pk

j · err(Mk , xj , yj),
where the misclassification error err(Mk , xj , yj) returns 1 if Mk(xj) ̸= yj , otherwise it returns 0.

5. If error(Mk) > 0.5: Abandon this classifier and go back to step 1.
6. Calculate βk = εk

1−εk
.

7. Update weights for the next iteration: wk+1
j = wk

j β
1−err(Mk ,xj ,yj)
k . If a tuple is misclassified, its weight

remains the same, otherwise it is decreased. Misclassified tuple weights are increased relatively.
8. Add wk+1, Mk , and βk to their respective lists.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 71

AdaBoost ("Adaptive Boosting"10): Prediction

• Initialize weight of each class to zero.
• For each classifier i in k classifiers:

1. Calculate the weight of this classifier’s vote: wi = log(1
βi
).

2. Get class prediction c for (single) tuple x from current weak classifier Mi : c = Mi(x).
3. Add wi to weight for class c.

• Return predicted class with the largest weight.
• Mathematically, this can be formulated as:

M(x) = argmaxy∈Y
∑k

i=1(log
1
βi
)Mi(x)

9Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. DOI: 10.1006/jcss.1997.1504.
[Online]. Available: https://doi.org/10.1006/jcss.1997.1504, Algorithm AdaBoost.M1 on p. 131.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 72

https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504

Random Forest12

• Ensemble method consisting only of decision trees where each tree has been generated using
random selection of attributes at each node.

• Classification: Each tree votes and the most popular class is returned.
• Two methods to construct random forests: (each builds k trees)

1. Forest-RI (random input selection):
• Random sampling with replacement to obtain training data from D.
• Set F as the number of attributes to determine split at each node. F is smaller than the number of available

attributes.
• Construct decision tree Mi by randomly select candidates at each node. Use CART to grow tree to maximum

size without pruning.
2. Forest-RC: Similar to Forest-RI but new attributes (features) are generated by linear combinations of

existing attributes to reduce correlation between individual classifiers. At each node, attributes are
randomly selected.

• Comparable in accuracy to AdaBoost, but more robust to errors and outliers.
• Insensitive to the number of attributes selected for consideration at each split, and faster

than bagging or boosting.
11Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. DOI: 10.1006/jcss.1997.1504.

[Online]. Available: https://doi.org/10.1006/jcss.1997.1504, Algorithm AdaBoost.M1 on p. 131.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 73

https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504

Classification of Class-imbalanced Data Sets

Class-Imbalanced Data
Class-Imbalanced Data refers to data where the main class of interest (positive labeled) is only
represented by a small number of tuples. E.g., medical diagnosis and fraud detection.

• Problem because traditional methods assume equality between classes,
i. e. a balanced distribution of classes and equal error costs.

• Typical methods for imbalanced data in binary classification:
1. Undersampling/Oversampling: Changes distribution of tuples in training data.

• Undersampling: Randomly eliminate tuples from negative class.
• Oversampling: Re-samples data from positive class.

For instance, method SMOTE generates synthetic data that is similar to existing data using nearest neighbor.

2. Threshold-moving: Moves the decision threshold, t , so that the rare-class tuples are easier to classify,
and hence, less chance of costly false-negative errors. Works when class returns a probability.

3. Ensemble techniques.

Threshold-moving and ensemble methods work well on extremely imbalanced data.
• Still difficult on multi-class tasks.

13L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. DOI: 10.1023/A:1010933404324. [Online]. Available: https://doi.org/10.1023/A:1010933404324.

D. Probst | CS6 | KDDmUe 7. Classification | Version 333648c SS2025 74

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

	Basic Concepts
	Decision Tree Induction
	Information Gain (ID3)
	Gain Ratio (C4.5)
	Gini Index (CART)
	Overview

	Rule-Based Classification
	Bayes Classification Methods
	Model Evaluation
	Evaluation Metrics
	Evaluation Strategies

	Ensemble Methods
	Summary
	Appendix
	Decision Tree Induction
	Evaluation: Bootstrap and Statistical Significance
	Ensemble Methods: AdaBoost and Random Forests

