IV —
6. Mining Frequent Patterns

Knowledge Discovery in Databases with Exercises

Dominik Probst, dominik.probst@fau.de
Computer Science 6 (Data Management), Friedrich-Alexander-Universitat Erlangen-Nurnberg
Summer semester 2025



Outline

=A

U

Friedrich-Alexander-Universitat
Technische Fakultat

1. Basic Concepts

2. Scalable Frequent-itemset Mining Methods
Apriori
FP-growth
Other Approaches

3. Generating Association Rules

4. Which Patterns are Interesting?

5. Summary



|I:/A\LJJ $ Shnischo FoKGIREE

Basic Concepts



What is Frequent-pattern Analysis? EAN) e

[LI//aa\

Frequent Pattern

A pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a dataset.

¢ Finding inherent regularities in data:
e What products are often purchased together? Beer and diapers?!
e What are the subsequent purchases after buying a PC?
® Who bought this has often also bought . . .
® What kinds of DNA are sensitive to this new drug?
e Can we automatically classify web documents?

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns S$S2025



What is Frequent-pattern Analysis? EAN) e
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Frequent Pattern

A pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a dataset.

¢ Finding inherent regularities in data:

e What products are often purchased together? Beer and diapers?!
e What are the subsequent purchases after buying a PC?

® Who bought this has often also bought . . .

® What kinds of DNA are sensitive to this new drug?

e Can we automatically classify web documents?

Intrinsic and Important

A frequent pattern is an intrinsic and important property of a dataset.
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Recommendation Systems

While frequent pattern analysis often serves as the foundation of recommendation systems, such
systems typically consist of multiple distinct components.

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns §82025



Why is Frequent-pattern Mining Important? |E/A\U

¢ Foundation for many essential data-mining tasks:
® Association, correlation, and causality analysis.
Sequential, structural (e.g., sub-graph) patterns.
Pattern analysis in spatiotemporal, multimedia, time-series, and stream data.
Classification: discriminative, frequent-pattern analysis.
Cluster analysis: frequent-pattern-based clustering.
Data warehousing: iceberg cube and cube gradient.
Semantic data compression: fascicles'
Broad applications.

"H. Jagadish et al. i 1 and pattern extraction with fascicles,” in VLDB, vol. 99. 1999, pp. 186-97
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Basic Concepts: Frequent Iltemsets EAN) e
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¢ |temset:
® A set of one or more items.
o k-itemset X = {Xy, X, ..., X}
e Support:
e Absolute Support s/Support Count of X:
e Frequency or occurrence count of X.
* Relative Support s:

e The fraction of the transactions that contain X.
¢ |.e. the probability that a transaction contains X.

Frequent ltemset

An itemset X is frequent, if X’s support is no less than a min_sup threshold.
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Frequent ltemsets - Example
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TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Minimum (absolute) support threshold:
e Set by the user.
® |n this example: min_sup = 3.
¢ Frequent ltemsets:
¢ 1-itemsets:
L]
2-itemsets:
L]
3-itemsets:
L]
® 4-itemsets:
L]

e 5-itemsets:
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TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Minimum (absolute) support threshold:
e Set by the user.
® |n this example: min_sup = 3.
¢ Frequent ltemsets:
¢ 1-itemsets:
o {Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3.
2-itemsets:
L]
3-itemsets:
L]
® 4-itemsets:
L]

e 5-itemsets:
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Frequent ltemsets - Example
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TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Minimum (absolute) support threshold:
e Set by the user.
® |n this example: min_sup = 3.
¢ Frequent ltemsets:
¢ 1-itemsets:
o {Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3.
2-itemsets:
¢ {Beer, Diapers}: 3
3-itemsets:
L]
* 4-itemsets:
L]

e 5-itemsets:
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Frequent ltemsets - Example
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TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Minimum (absolute) support threshold:
e Set by the user.
® |n this example: min_sup = 3.
¢ Frequent ltemsets:
¢ 1-itemsets:
o {Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3.
2-itemsets:
¢ {Beer, Diapers}: 3
3-itemsets:
e None
* 4-itemsets:
L]
* 5-itemsets:
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Frequent ltemsets - Example EAN) e

TID Items bought
10 Beer, Nuts, Diapers ¢ Minimum (absolute) support threshold:
20 Beer, Coffee, Diapers * Setbytheuser.
30 Beer, Diapers, Eggs ® |n this example: min_sup = 3.
40 Nuts, Eggs, Milk ¢ Frequent ltemsets:
50 | Nuts, Coffee, Diapers, Eggs, Milk * 1-itemsets:
o {Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3.

. * 2-itemsets:
Customer buys diapers « (Beer, Diapers}: 3
¢ 3-itemsets:
e None
® 4-itemsets:
e None
e 5-itemsets:

Customer buys both

Customer buys beer
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Frequent ltemsets - Example EAN) e

TID Items bought
10 Beer, Nuts, Diapers ¢ Minimum (absolute) support threshold:
20 Beer, Coffee, Diapers * Setbytheuser.
30 Beer, Diapers, Eggs ® |n this example: min_sup = 3.
40 Nuts, Eggs, Milk ¢ Frequent ltemsets:
50 | Nuts, Coffee, Diapers, Eggs, Milk * 1-itemsets:
o {Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3.

. * 2-itemsets:
Customer buys diapers « (Beer, Diapers}: 3
¢ 3-itemsets:
e None
* 4-itemsets:
e None
e 5-itemsets:
e None

Customer buys both

Customer buys beer
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Basic Concepts: Association Rules EAN) e
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¢ Implication of the form A —> B:

e where A% (), B#Dand AN B = 0.
e Strong rule:

e Satisfies both min_sup and min_conf

support(A = B) = P(AU B),
confidence(A = B) = P(B|A)
support(A U B)

support(A)

® |.e. confidence of rule can be easily derived from the support counts of Aand AU B.
¢ Association-rule mining:

* Find all frequent itemsets (with a length of at least 2).
e Generate strong association rules from the frequent itemsets.
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Association Rules - Example EA) e

TID Items bought

10 Beer, Nuts, Diapers * Thresholds:

20 Beer, Coffee, Diapers : Set by the user.

30 Beer, Diapers, Eggs In this e?<ample_.

20 Nuts, Eggs, Milk e %,

50 | Nuts, Coffee, Diapers, Eggs, Milk e Reminder:

e Frequent itemset(s) with length > 2:

Customer buys both ~ Customer buys diapers « {Beer, Diapers}: 3

o Already satisfy the min_sup threshold.

Customer buys beer
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Association Rules - Example EA) e

TID Items bought
10 Beer, Nuts, Diapers * Thresholds:
20 Beer, Coffee, Diapers : ﬁ]etth?ggg;s?;
30 Beer, Diapers, Eggs . min SUF; : N
40 Nuts, Eggs, Milk o min_conf = 50%.
50 | Nuts, Coffee, Diapers, Eggs, Milk e Reminder:
e Frequent itemset(s) with length > 2:
Customer buys both ~ Customer buys diapers « {Beer, Diapers}: 3

o Already satisfy the min_sup threshold.

e Association Rules:
e Beer = Diapers:
e Diapers — Beer:

Customer buys beer
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Association Rules - Example EA) e

TID Items bought
10 Beer, Nuts, Diapers * Thresholds:
20 Beer, Coffee, Diapers : ﬁ]etth?ggg;s?;
30 Beer, Diapers, Eggs . min SUF; : N
40 Nuts, Eggs, Milk o min_conf = 50%.
50 | Nuts, Coffee, Diapers, Eggs, Milk e Reminder:
e Frequent itemset(s) with length > 2:
Customer buys both ~ Customer buys diapers « {Beer, Diapers}: 3

o Already satisfy the min_sup threshold.

e Association Rules:
e Beer = Diapers:
* P(Diapers|Beer) = 2 = 100%.
e Diapers — Beer:

Customer buys beer
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Association Rules - Example EA) e

TID Items bought

10 Beer, Nuts, Diapers * Thresholds:

20 Beer, Coffee, Diapers : ﬁ]etth?ggg;s?;

30 Beer, Diapers, Eggs . min SUF; : N

40 Nuts, Eggs, Milk o min_conf = 50%.

50 | Nuts, Coffee, Diapers, Eggs, Milk e Reminder:

e Frequent itemset(s) with length > 2:

Customer buys both ~ Customer buys diapers « {Beer, Diapers}: 3

o Already satisfy the min_sup threshold.

e Association Rules:
e Beer = Diapers:
* P(Diapers|Beer) = 2 = 100%.
e Diapers — Beer:

Customer buys beer * P(Beer|Diapers) = ; = 75%.
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Closed Itemsets and Max-ltemsets EAN) e
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¢ A long itemset contains a combinatorial number of sub-itemsets.
* Eg. {a),a,...,an} contains

100 n 100 "
1 2
e Solution:

* Mine closed itemsets and max-itemsets instead.

100
+ (100) =210 _ {1~ 1.27 - 10% sub-itemsets!

Closed ltemsets?
An itemset X is closed, if X is frequent and there exists no super-itemset X C Y with the same support.

Max-ltemsets®
An itemset X is a max-itemset, if X is frequent and there exists no frequent super-itemset X C Y.

2N. Pasquier et al., “Discovering frequent closed itemsets for iation rules,” in Proceedings of the 7th | t Col on Database Theory, ser. ICDT 99, Berlin, Heidelberg: Springer-Verlag,
1999, pp. 398416, ISBN: 3540654526

3R. J. Bayardo, “Efficiently mining long patterns from databases,” SIGMOD Rec., vol. 27, no. 2, pp. 85-93, Jun. 1998, ISSN: 0163-5808. DOI: 10.1145/276305.276313. [Online]. Available:
https://doi.org/10.1145/276305.276313
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Closed Itemsets and Max-ltemsets - Example

Friedrich-Alexander-Universitat

EAU

TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Reminder:
* Frequent ltemsets:
¢ 1-itemsets:

{Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3

e 2-itemsets:
{Beer, Diapers}: 3
¢ Closed ltemsets:
* 1-itemsets:

¢ 2-itemsets:
L]
e Max-ltemsets:
¢ 1-itemsets:

® 2-itemsets:
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Closed Itemsets and Max-ltemsets - Example EAN) e

TID Items bought

10 Beer, Nuts, Diapers

20 Beer, Coffee, Diapers

30 Beer, Diapers, Eggs

40 Nuts, Eggs, Milk

50 | Nuts, Coffee, Diapers, Eggs, Milk

Customer buys both

Customer buys beer

Customer buys diapers

¢ Reminder:
* Frequent ltemsets:
¢ 1-itemsets:
{Beer}: 3, {Nuts}: 3, {Diapers}: 4, {Eggs}: 3
e 2-itemsets:
{Beer, Diapers}: 3
¢ Closed ltemsets:
* 1-itemsets:
e {Nuts}: 3, {Diapers}: 4, {Eggs}: 3
* 2-itemsets:
L]
o Max-ltemsets:
* 1-itemsets:

® 2-itemsets:
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Closed Itemsets and Max-ltemsets - Example E A o

TID Items bought e Reminder:
10 Beer, Nuts, Diapers ¢ Frequent Itemsets:
20 Beer, Coffee, Diapers * 1-itemsets: _
30 Beer, Diapers, Eggs {28_eer}. 3, {l.\luts}. 3, {Diapers}: 4, {Eggs}: 3
" e 2-itemsets:
40 Nuts, Eggs, Milk {Beer, Diapers}: 3
50 | Nuts, Coffee, Diapers, Eggs, Milk e Closed ltemsets:
* 1-itemsets:

Customer buys diapers o {Nuts}: 3, {Diapers}: 4, {Eggs}: 3
* 2-itemsets:
e {Beer, Diapers}: 3
* Max-ltemsets:
* 1-itemsets:

Customer buys both

® 2-itemsets:

Customer buys beer
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Closed Itemsets and Max-ltemsets - Example E A o

TID Items bought e Reminder:
10 Beer, Nuts, Diapers ¢ Frequent Itemsets:
20 Beer, Coffee, Diapers * 1-itemsets: _
30 Beer, Diapers, Eggs {28_eer}. 3, {l.\luts}. 3, {Diapers}: 4, {Eggs}: 3
" e 2-itemsets:
40 Nuts, Eggs, Milk {Beer, Diapers}: 3
50 | Nuts, Coffee, Diapers, Eggs, Milk e Closed ltemsets:
* 1-itemsets:

Customer buys diapers o {Nuts}: 3, {Diapers}: 4, {Eggs}: 3
* 2-itemsets:
e {Beer, Diapers}: 3
* Max-ltemsets:
* 1-itemsets:
e {Nuts}: 3, {Eggs}: 3
® 2-itemsets:

Customer buys both

Customer buys beer
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Closed Itemsets and Max-ltemsets - Example E A o

TID Items bought e Reminder:
10 Beer, Nuts, Diapers ¢ Frequent Itemsets:
20 Beer, Coffee, Diapers * 1-itemsets: _
30 Beer, Diapers, Eggs {ZB_eer}. 3, {l.\luts}. 3, {Diapers}: 4, {Eggs}: 3
" e 2-itemsets:
40 Nuts, Eggs, Milk {Beer, Diapers}: 3
50 | Nuts, Coffee, Diapers, Eggs, Milk e Closed ltemsets:
* 1-itemsets:

Customer buys diapers o {Nuts}: 3, {Diapers}: 4, {Eggs}: 3
* 2-itemsets:
e {Beer, Diapers}: 3
* Max-ltemsets:
* 1-itemsets:
e {Nuts}: 3, {Eggs}: 3
e 2-itemsets:
¢ {Beer, Diapers}: 3

Customer buys both

Customer buys beer
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Scalable Frequent-itemset Mining Methods



The Downward-closure Property EAL) =

[LI//aa\

The Downward-closure Property

Any subset of a frequent itemset must also be frequent.

e Example:

e If {Beer, Diapers, Nuts} is frequent, so is {Beer, Diapers}.

* |l.e. every transaction having {Beer, Diapers, Nuts} also contains {Beer, Diapers}.
e Utilized by the major frequent-itemset mining algorithms:

e Apriori*

¢ Frequent-pattern growth (FP-growth)®

e efc...

“R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proceedings of the 20th International Conference on Very Large Data Bases, ser. VLDB '94, San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487-499, I1SBN: 1558601538

5J. Han et al., “Mining frequent patterns without candidate generation,” SIGMOD Rec., vol. 29, no. 2, pp. 1-12, May 2000, ISSN: 0163-5808. DOI: 10.1145/335191.335372. [Online]. Available:
https://doi.org/10.1145/335191.335372
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Scalable Frequent-itemset Mining Methods
Apriori



Apriori Algorithm FAU Fredrich Alexander-Univrsitat

The Apriori Pruning Principle®’

If there is any itemset which is infrequent, its supersets should not be generated/tested!

e The Apriori Algorithm - A Candidate Generation Approach:®
® |nitially, scan DB once to get frequent 1-itemsets.
* Generate length-(k + 1) candidate itemsets from length-k frequent itemsets.
® Test the candidates against DB, discard those that are infrequent.
* Terminate when no further candidate or frequent itemset can be generated.

SR. Agrawal and R. Srikant, “Fast algorithms for mining iation rules in large Jin of the 20th International Conference on Very Large Data Bases, ser. VLDB '94, San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487-499, I1sBN: 1558601538

7H. Mannila et al., “Efficient algorithms for discovering association rules,” in Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, ser. AAAIWS'94, Seattle, WA: AAAI
Press, 1994, pp. 181-192

°A lete pseudo-code can be found in the appendix.
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Apriori Algorithm - Example EAN) e

[LI//aa\

Database
TID Items
10 A,C,D
20 B,C,E
30 | AB,C,E
40 B,E

min_sup = 2
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Apriori Algorithm - Example EAN) e

[LI//aa\

Cy
Database Itemset | sup
TID | ltems {A} 2
10 | ACD {8} | 3
18t scan
20 | BCE {cy [ 3
30 | ABCE {p} | 1
40 | BE {e} | 3

min_sup = 2
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Apriori Algorithm - Example EAN) e

[LI//aa\

Ci
Database ltemset | sup L
TID | Items {A} 2 Itemset | sup
10 | ACD | {B} 3 {A} 2
20 BCE | scan {c} 3 prune {B} 3
30 | ABCCE {D} 1 {C} 3
40 B,E {E} 3 {E} 3

min_sup = 2
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Apriori Algorithm - Example EAN) e

[LI//aa\

Gz

Cy Itemset

Database ltemset | sup Ly {A, B}

TID | Items {A} 2 ltemset | sup {A, C}

10 | ACD | {B} 3 {A} 2 , {A E}

20 | BCE |1-scan [ {¢} | 3 | Prune (g} | 3 |Combine g oy

30 | ABCCE {D} 1 {C} 3 {B,E}

40 B,E {E} 3 {E} 3 {C,E}
min_sup = 2
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Apriori Algorithm - Example
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18t scan

Database
TID Items
10 A,C,D
20 B,C,E
30 | AB,C,E
40 B,E
min_sup = 2

prune

L

Itemset

{A}

G

Itemset | sup
{Ap | 2
{B} | 3
{c} | s
{o} [ 1
{€} | 3

{B}

C2
Itemset
{A B}
{A c}
{A E}

combine {B, C}

{c}

{E}

W wWwlw e

{B.E}
{C.E}
G V2" scan
Itemset | sup
{A, B}
{A,C}
[AE}
{B,C}
{B,E}
{c.E}

|| =

N W
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Apriori Algorithm - Example
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18t scan

Database
TID Items
10 A,C,D
20 B,C,E
30 | AB,C,E
40 B,E
min_sup = 2

prune

G

Itemset | sup
{Ap | 2
{B} | 3
{c} | s
{o} [ 1
{€} | 3

Gz
ltemset
Ly {A, B}
ltemset | sup {A, C}
{Ay | 2 | {AE}
(B 3 combine {B,CT
{c} [ 3 {B,E}
{e} | 3 {C.E}
Co v 2" scan
prune Itemset | sup
L e {A B} | 1
ltemset | sup {A,C} | 2
{A,C} | 2 {AE} | 1
{B,C} | 2 {B,C} | 2
{B,E} | 3 {B,E} | 3
{C,E} | 2 {C,E} | 2
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Apriori Algorithm - Example EAN) e
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)

Ci ltemset

Database Itemset | sup Ly {A, B}
TID | Items {A} 2 ltemset | sup {A, C}
10 | ACD {B} 3 {A} 2 , {AE}
20 | BCE |l°sean gy [ 3 | Prune gl | 3 |combine —rg oY
30 | ABCCE {D} 1 {C} 3 {B,E}
40 B,E {E} 3 {E} 3 {C,E}

C + 2" scan

rune Itemset | su

min_sup = 2 Lo P/—\ {A, B} 1p
ltemset | sup {A,C} | 2

{A,C} | 2 {AE} | 1

Cs {B,C} | 2 {B,C} | 2

ltemset | combine TrgTE1TT3 {B,E} | 3

{B,C,E} {CaE} 2 {CaE} 2
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E/ \ U Friedrich-Alexander-Universitiit
EAU

Gy
Gy ltemset
Database Itemset | sup Ly {A, B}
TID | Items {A} 2 ltemset | sup {A, C}
10 | ACD | {B} 3 {A} 2 , {AE}
20 | BCE |1°scan gy [ 3 | Pune gy | 3 |combine rpray
30 | ABCCE {D} 1 {C} 3 {B,E}
40 B,E {E} 3 {E} 3 {C,E}
C v 2" scan
rune Itemset | sup
min_sup = 2 Ly P /—\ {A, B} 1
ltemset | sup {A,C} | 2
{A,C} | 2 {AE} | 1
Ly Cs {B,C} | 2 {B,C} | 2
ltemset | sup | 3scan [~ femset |_combine TYEEL [ 3 {B,E} | 3
{Ba C, E} 2 {Bv C, E} {Ca E} 2 {Ca E} 2
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Apriori Algorithm - Candidate Generation EAN) e

Follow the Apriori Pruning Principle!

If any subset of an itemset you wish to generate is infrequent, it is not a valid candidate!

e Example®:
* The itemset {A, B, C} is not a valid candidate:
* Frequent Subsets: {A}, {B}, {C}, {A, ¢}, {B, C}
e Infrequent Subset: {A, B}
¢ How to generate candidates?
e Step 1: Join all frequent k-itemsets that have kK — 1 items in common.
e E.g. {A, B} and {A, C} can be joined to form {A, B, C}.
e Step 2: Prune all combinations that have infrequent subsets.
e E.g. {A, B, C} has to be pruned, because {A, B} is infrequent.

9Based on the previous sli
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Improvements B et

[LI//aa\

e Apriori is pretty inefficient:
e Multiple scans of transaction database.
* Huge number of candidates.
e Support counting for candidates is laborious.

¢ Many improvements have been proposed.
e Some examples:
® Reducing the passes of database scans:
e Partitioning™
¢ Dynamic itemset counting"’
e Shrinking the number of candidates:
e Hashing'?

%¢.g. A. Savasere et al., “An efficient algorithm for mining association rules in large databases,” in Proceedings of the 21th International Conference on Very Large Data Bases, ser. VLDB '95, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 432—444, ISBN: 1558603794

"e.g. S. Brin et al., “Dynamic itemset counting and implication rules for market basket data,” SIGMOD Rec., vol. 26, no. 2, pp. 255-264, Jun. 1997, 1ssN: 0163-5808. DOI: 10.1145/253262. 253325, [Online].
Available: https://doi.org/10.1145/253262.253325

2g.9. J. S. Park et al., “An effective hash-based algorithm for mining association rules,” SIGMOD Rec., vol. 24, no. 2, pp. 175-186, May 1995, ISSN: 0163-5808. DOI: 10.1145/568271.223813. [Online].
Available: https://doi.org/10.1145/568271.223813
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Improvements - Partitioning EAL) =

[LI//aa\

Partitioning: The Basic Idea

Any itemset that is potentially frequent in the whole database must be frequent in at least one of the
partitions of the database.

¢ Method: Scan the database twice
e Scan 1: Partition database and find the local frequent itemsets:
e min_sup; = min_sup[%] - |oDB|.
e Scan 2: Use the local frequent itemsets to check for global frequent itemsets:
e Only itemsets that are frequent in at least one partition are checked.

+ + s + =DB
sup(i) < |oDB|

sup;(i) < |oDBy| sup,(i) < |oDBy| sup,(i) < |oDBy|
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Improvements - Dynamic Itemset Counting (l) EAN) e

Dynamic Iltemset Counting (DIC): The Basic Idea

Itemset frequency counting starts once all subsets are confirmed to be frequent.

¢ Candidate itemsets are added at different points during a scan:
* New candidate itemsets can be added at any start point during a scan.
e E.g. if Aand B are already found to be frequent,
AB are also counted from that starting point on.
e Uses the count-so-far as the lower bound of the actual count.
e [f count-so-far passes minimum support, itemset is added to frequent-itemset collection.
e Can then be used to generate even longer candidates.
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Improvements - Dynamic ltemset Counting (Il)  [EA () =&

Transactions

1-itemsets

Apriori: 2-itemsets

1-itemsets
2-itemsets
DIC: _ B-itemsets ~~ "
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E/ \ U Friedrich-Alexander-Universitiit
EAU

Hashing: The Basic Idea

Itemsets are hashed into buckets, and during the first scan, only the occurrences of each bucket are
counted.

¢ A k-itemset whose corresponding hashing-bucket
count is below the threshold cannot be frequent.

. Hash table:
e Candidates: a, bl:,)é;fd,fe. 1 - count itemsets
® While scanning or frequent 1-itemsets, create has
entries for 2-itemsets: 35 | {ab,ad, ae}

o {ab, ad, ae} 88 {bd, be, de}
o {bd, be, de} . .
o .. - .

¢ Frequent 1-itemset: a, b, d, e. 102 | {yz, gs, wt}

® abis not a candidate 2-itemset, if the sum of count of
{ab, ad, ae} is below support threshold.
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Scalable Frequent-itemset Mining Methods
FP-growth



FP-growth E A\ s
LI/

e Apriori:
e Breadth-first (i.e., level-wise) search.
e Candidate generation and test.

e Often generates a huge number of candidates.
¢ FP-growth:

e Depth-first search.
* Avoid explicit candidate generation.

FP-growth: All Frequent Itemsets in Only Two Scans

FP-growth employs a tree-based structure to identify all frequent itemsets in a dataset using two scans.
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FP-growth - Algorithm

EA

U

Friedrich-Alexander-Universitat

Technische Fakultat

e Steps of FP-growth:

TID | Items bought
100 | f,a,c,d,g,i,m,p
200 a,b,c,f,l,m
300 b,f,h,j,ow
400 b,c.k,s,p
500 | a,f.c.e,l,p,m,n
min_sup = 3
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FP-growth - Algorithm

EA

U

Friedrich-Alexander-Universitat

Technische Fakultat

e Steps of FP-growth:

1. Find frequent 1-itemsets (1st scan).

TID | Items bought
100 | f,a,c,d,g,i,m,p
200 a,b,c,f,l,m
300 b,f,h,j,ow
400 b,c.k,s,p
500 | a,f.c.e,l,p,m,n
min_sup = 3
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FP-growth - Algorithm E A o

[LI//aa\

¢ Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | facdgimp
200 a,b,c,fl,m
300 b,f,h,j,ow
400 b,c.k,s,p
500 | a,f.c.e,l,p,m,n

min_sup = 3

Frequent 1-itemsets:

Itemset | Support
{f}
{a}
{c}
{m}
{p}
{b}

W W W s W »
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FP-growth - Algorithm
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.

TID | Items bought

100 | fa,c,d,g.imp

200 a,b,c,f,l,m

300 b,f,h,j,ow

400 b,c.k,s,p

500 | aJfc.elpmn

min_sup = 3

Frequent 1-itemsets:

Itemset | Support

f}

{a}

{c}

{m}

{p}

W W W s W »

{b}

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns

$82025 21



FP-growth - Algorithm
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.

TID | Items bought

100 | fa,c,d,g.imp

200 a,b,c,f,l,m

300 b,f,h,j,ow

400 b,c.k,s,p

500 | aJfc.elpmn

min_sup = 3
f-list: f-c-a-b-m-p

Frequent 1-itemsets:

Itemset | Support

f}

{a}

{c}

{m}

{p}

W W W s W »

{b}
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FP-growth - Algorithm E A o
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¢ Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | facdg.imp
2. Put them in a frequency-descending list. 200 | abcflm

300 b,f,h,j,o,w
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3
f-list: f-c-a-b-m-p
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¢ Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | facdgimp
2. Put them in a frequency-descending list. 200 | abcflm

300 b,f,h,j,o,w
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3
f-list: f-c-a-b-m-p
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FP-growth - Algorithm E A o

[LI//aa\

¢ Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | abcflm

300 b,f,h,j,o,w
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p
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FP-growth - Algorithm E A\ s

[LI//aa\

e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | abcflm

. 300 b,f,h,j,ow
= Hlist. 400 | bcksp
3. Perform the 2nd scan: 500 | afcelpmn
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

AQAHAHAH
-

=8
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
\ . : 200 a,b,cfl,m
2. Putthem in a frequency-descending list.

. 300 b,f,h,j,ow
= Hlist. 400 | bcksp
3. Perform the 2nd scan: 500 | afcelpmn
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

AQAHAHAH
-

=8
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | tcabm

300 b,f,h,j,ow

5 P:?f-"?rt{ ond ) 400 b,ck,s,p
. Perform the 2nd scan: 500 | afc.elpmn

e Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

AQAHAHAH
-

=8
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FP-growth - Algorithm E A\ s

[LI//aa\

e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | tcabm

300 b,f,h,j,o,w
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:

¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

(o] [o] [~] B8
n n n

o

§E
5]
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | fcabm

300 b,f,h,j,o,.w
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

(o] [o] [~] B8
n n n

o

§E
5]
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | fcabm

300 f.b
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

(o] [o] [~] B8
n n n

o

§E
5]
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FP-growth - Algorithm E A\ s

[LI//aa\

e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | fcabm

300 f.b
400 b,c.k,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:

¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

N

:
M

-A -3
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. 200 | fcabm

300 fb
400 b,ck,s,p
500 | aJfc.elpmn

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.

min_sup = 3

f-list: f-c-a-b-m-p

N

:
M

-A -3
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. ggg f’c’?g”m
= f-list. 200 S b B
3. Perform the 2nd scan: 500 a’f’c,éylzp,m,n

e Sort and filter the items in each tuple.

e Construct the initial FP-tree. min_sup = 3

f-list: f-c-a-b-m-p

N

:
M

-A -3
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FP-growth - Algorithm E A\ s

[LI//aa\

e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. ggg f’c’?g”m
= f-list. 200 S ’b B
3. Perform the 2nd scan: 500 a’f’c,éylzp,m,n

¢ Sort and filter the items in each tuple.

e Construct the initial FP-tree. min_sup = 3

f-list: f-c-a-b-m-p

' ~N
0 D
B

/ N

UL
oo
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. ggg f’c’?g”m
= f-list. 200 5 b
3. Perform the 2nd scan: 500 a,f,cyé,ljp‘m,n

¢ Sort and filter the items in each tuple.

e Construct the initial FP-tree. min_sup = 3

f-list: f-c-a-b-m-p

' ~N
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B
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. ggg f’c’?g”m
= f-list. 200 5 b
3. Perform the 2nd scan: 500 f,c,;,;Tl,p

e Sort and filter the items in each tuple.

e Construct the initial FP-tree. min_sup = 3

f-list: f-c-a-b-m-p

' ~N
0 D
B

/ N
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oo
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FP-growth - Algorithm E A\ s
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e Steps of FP-growth: TID | Items bought
1. Find frequent 1-itemsets (1st scan). 100 | feamp
2. Put them in a frequency-descending list. ggg f’c’?g”m
= f-list. 200 5 b
3. Perform the 2nd scan: 500 f,c,;,;Tl,p

¢ Sort and filter the items in each tuple.

e Construct the initial FP-tree. min_sup = 3

f-list: f-c-a-b-m-p

' ~N
0 D
B

/ N

2

[3]

L

!
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FP-growth - Algorithm

Friedrich-Alexander-Universitat
| E Technische Fakultat
/e

e Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)

Item

[

T3 |o

wlw|w|wl|s]| >
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FP-growth - Algorithm
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Technische Fakultat

e Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

Item

T|(3I|o|»

wlw|w|wl|s]| >
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FP-growth - Algorithm

=A

U

Friedrich-Alexander-Universitat
Technische Fakultat

¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

Item

T|(3I|o|»

wlw|w|wl|s]| >
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

Item Sum //>/ :
f 4 —eemm T v //\(/'//
a 3 ——-—s__ ‘ ‘
b 3 |- /*": ‘\‘
n [ o |3 E-
| | ’
Item | Conditional Pattern Base
f
c
a
b
m
p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan). /
2. Putthem in a frequency-descending list. tem | Sum U .
= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table) . \
4. Start the FP-tree recursion: - f\ | -
4.1 Determine the conditional pattern

o
wlw|w|o|s]|s
i
]
'
!
i
I
|
v
IR
@

T3

base (prefix paths) for each frequent ltem | Conditional Pattern Base
item in the header table. f .

C

a

b

m

p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

- ~
2. Putthem in a frequency-descending list. "ef'" s:"' I . -
= f-list. ) - |
R 3 1 (e
3. Perform the 2nd scan: ° : En
a
e Sort and filter the items in each tuple. 5 3 - ﬂ \ EII
e S A I 4
e Construct the initial FP-tree. —~ I n N - _ )
(Also comes with a header table) p . ’
4. Start the FP-tree recursion: e EE - 'n
4.1 Determine the conditional pattern
base (prefix paths) for each frequent ltem | Conditional Pattern Base
item in the header table. f _
G] f:3
a
b
m
p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

- ~
2. Put them in a frequency-descending list. "ef'" s:"' T 1
= f-list. B N |
- ---—|cC 1 (e
3. Perform the 2nd scan: o g D5
a T )
e Sort and filter the items in each tuple. 5 s |- o ; \ EII
e Construct the initial FP-tree. [ B 10 / b
(Also comes with a header table) S ) )/
4. Start the FP-tree recursion: - -
4.1 Determine the conditional pattern
base (prefix paths) for each frequent jtem | Conditional Pattern Base
item in the header table. f B
c f:3
a f,c:3
b
m
p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

- ~
2. Putthem in a frequency-descending list. "ef'" s:"' T
= flist. i - *-/ -‘
o ---—|cC 1 1
3. Perform the 2nd scan: ° : . ,
a Tt e- 1
e Sort and filter the items in each tuple. 5 3 e ED \ EII
e Construct the initial FP-tree. e -,n R - v /‘
(Also comes with a header table) p Z )
4. Start the FP-tree recursion: e EE - f\, -
4.1 Determine the conditional pattern
base (prefix paths) for each frequent Item | Conditional Pattern Base
item in the header table. f _
c f:3
a f,c:3
b f,c,a:1, f:1, c:1
m
p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:
4.1 Determine the conditional pattern
base (prefix paths) for each frequent

7 ~N
Item Sum ////J» //)
f 4 - o |
a 3 T, ‘ A‘ ‘n
b 3 |- TN | 7
0 T Rl L] - R E) Y
o s | | |

. g Item | Conditional Pattern Base

item in the header table. f _
c f:3
a f,c:3
b f,c,a:1, f:1, c:1
m f,c,a:2, f,c,a,b:1
p
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

Item

[

T3 | O

wlw|w|wls]| >
[

- [-A

SVSENREN
—+[H- @l
\

| | | /

Item

Conditional Pattern Base

f:3

f,c:3

f,c,a:1, f:1, c:1

f,c,a:2, f,c,a,b:1

o|3|T|m|o

f,c,a,m:2, c,b:1
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

Item
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T3 |o
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B 3
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‘
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Item

Conditional Pattern Base

f:3
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:

e Sort and filter the items in each tuple.

e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:

e Sort and filter the items in each tuple.

e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
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e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

Condition

Pattern Base

C

f:3

Iltem

(e)f

Item | Conditional Pattern Base

©)f

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns

$82025 21



FP-growth - Algorithm

Friedrich-Alexander-Universitat
| E Technische Fakultat
/e

¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

Item

[

T3 |o

wlw|w|wl|s]| >

A 3

3

EH

PSRN

e
,E \
= \
+

Item

Conditional Pattern Base

f:3

f,c:3

f,c,a:1, f:1, c:1

f,c,a:2, f,c,a,b:1

o|3|T|| o

f,c,a,m:2, c,b:1

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns

$82025

21



FP-growth - Algorithm EA et

¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). a fe:3
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple. ftem | Sum
* Construct the initial FP-tree. @) | 8 |~ [/
i (a,)c 3 - |
(Also comes with a fzeader table) .
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each ltem | Conditional Pattern Base
non-empty conditional pattern base. (a,)f

4.3 Perform 4. for each cond. FP-tree. (a)c
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¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). ac f:3
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
* Sort and filter the items in each tuple. ftem | Sum
e Construct the initial FP-tree. @c) | 3 |-~.[/F
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item | Conditional Pattern Base
non-empty conditional pattern base. (a,c,) f -

4.3 Perform 4. for each cond. FP-tree.
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)

4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

Condition | Pattern Base
b fc,a:1, fi1, cil
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ey [ (@

(b,)e 2 -< |

- ,
(b.)a - -
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No frequent items
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:
4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

Condition

Pattern Base

m

f,c,a:2, f,c,a,b:1

Iltem

Sum -~

(m,)f

(m,)e

e
|

(m,)a

(m, )b

|l w|w]|w

|

4.2 Build a conditional FP-tree for each Item | Conditional Pattern Base
non-empty conditional pattern base. (m,) f -
4.3 Perform 4. for each cond. FP-tree. (m,) c f:3
(m,) a f,c:3
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¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). m.c f:3
2. Put them in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple. ftem | Sum
e Construct the initial FP-tree. (me)t| 3 |-~ [/]B
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item | Conditional Pattern Base
non-empty conditional pattern base. (m,c,) f -

4.3 Perform 4. for each cond. FP-tree.
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¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). m.a f.c:3
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
i H H Item Sum
e Sort and filter the items in each tuple.
* Construct the initial FP-tree. (ma)| 3 |-~ [/]9
(m, a,)c 3 -

(Also comes with a header table)
M| c
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item Conditional Pattern Base
non-empty conditional pattern base. (a,) f -
4.3 Perform 4. for each cond. FP-tree. (m,a,) c f:3
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¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). m.a f.c:3
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
i H H Item Sum
e Sort and filter the items in each tuple.
* Construct the initial FP-tree. (ma)| 3 |-~ [/]9
(m, a,)c 3 -

(Also comes with a header table)
M| c
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item Conditional Pattern Base
non-empty conditional pattern base. (a,) f -
4.3 Perform 4. for each cond. FP-tree. (m,a,) c f:3
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¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). m.a,c f:3
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
Item Sum

e Sort and filter the items in each tuple. ‘
e Construct the initial FP-tree. (mac)| 3 |-<, [/
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item Conditional Pattern Base
non-empty conditional pattern base. (m,ac,) f -

4.3 Perform 4. for each cond. FP-tree.
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

- ~
2. Putthem in a frequency-descending list. "ef'" s:"' BT - B
= f-list. ) - |
3 1 e
3. Perform the 2nd scan: ° : En
a 3 ‘
e Sort and filter the items in each tuple. 5 3 - m \ EII
e S A I 4
e Construct the initial FP-tree. —~ I n N - _ )
(Also comes with a header table) p T
4. Start the FP-tree recursion: e EE - f\, -
4.1 Determine the conditional pattern
.l:t>ase. (ﬁ:‘neﬁ)t: pa;hs)tf(:)rl each frequent Item | Conditional Pattern Base
item in the header table. f _
4.2 Build a conditional FP-tree for each c 3
non-empty conditional pattern base. a fc:3
4.3 Perform 4. for each cond. FP-tree. b fcad, f:1, ci
m f,c,a:2, f,c,a,b:1
p f,c,a,m:2, ¢,b:1
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

Condition | Pattern Base

p

f,c,a,m:2, c,b:1

Item Sum - > -
(p,)f 2 -

e | = - EII
CUREERISSENE - I
(p:)m 2 ! )/
() | 1 " / ’

Item | Conditional Pattern Base
(p,) C f:2
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¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.
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(p,)f 2 -

e | = - EII
G NER ST - I
(p:)m 2 ! )/
@) | ’/ ’

Item | Conditional Pattern Base
(p) c f:2

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns

$82025

21



FP-growth - Algorithm EA et

¢ Steps of FP-growth: Condition | Pattern Base
1. Find frequent 1-itemsets (1st scan). p.C f:2
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
¢ Sort and filter the items in each tuple. ftem | Sum
* Construct the initial FP-tree. (o) | 2 |-~ [/
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each Item \ Conditional Pattern Base

non-empty conditional pattern base. No frequent items
4.3 Perform 4. for each cond. FP-tree.
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¢ Steps of FP-growth:

1. Find frequent 1-itemsets (1st scan).
2. Putthem in a frequency-descending list.
= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

5. Collect the frequent itemsets.

D.Probst | CS6 | KDDmUe 6. Mining Frequent Patterns S$S2025



E/ \ U Friedrich-Alexander-Universitiit
EAU

¢ Steps of FP-growth:
1. Find frequent 1-itemsets (1st scan).

2. Putthem in a frequency-descending list.

= f-list.
3. Perform the 2nd scan:
e Sort and filter the items in each tuple.
e Construct the initial FP-tree.
(Also comes with a header table)
4. Start the FP-tree recursion:

4.1 Determine the conditional pattern
base (prefix paths) for each frequent
item in the header table.

4.2 Build a conditional FP-tree for each
non-empty conditional pattern base.

4.3 Perform 4. for each cond. FP-tree.

5. Collect the frequent itemsets.

Source Frequent ltemset(s)
Initial FP-tree {f}, {c}, {a}, {b}, {m}, {p}
c’s cond. FP-tree {c.,f}
a’'s cond. FP-tree {a,f}, {a,c}
b’s cond. FP-tree -
a,c’s cond. FP-tree {a,c,f}
m’s cond. FP-tree {m,f},{m,c},{m,a}
m,c’s cond. FP-tree {m,c,f}
m,a’s cond. FP-tree {m,a,f},{m,a,c}
m,a,c’s cond. FP-tree {m,a,c,f}
p’s cond. FP-tree {p,c}

p.c’s cond. FP-tree
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e Special Case: A single branch FP-tree
¢ No recursion required."®
e Frequent itemsets can directly be generated in one shot.

Frequent ltemsets:
{d}. {o}. {m}, {i}
{d,o}, {d,m}, {d,i}

{o,m}, {o,i}

e {mi}

{d,o,m}, {d,o0,i}, {d,m,i}

SRS
1

{o,m,i}

{d,o,m,i}

"3 A simple FP-tree recursion wil still work, but is not as efficent as one with a special case
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* Special Case: A single prefix path in a FP-tree
® Reduction of the single prefix path into one node.
e Concatenation of the mining results of the two parts.
e Both parts can be mined in parallel.

| |
| |
| I
;M - Em-FE e
/ N [N
- e
/ N - N\
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Advantages of the FP-growth Approach
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e Can be parallelized:
o Different conditional pattern bases can be mined in parallel.

No candidate generation

Only two scans of the database.
The FP-tree structure is compact:
e Compressed representation of the database.
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¢ Many other approaches exist.
e Often with a specialization. E.g.:

e ECLAT': Mining in the vertical data format.
e CLOSET'S: Mining closed itemsets.
e MaxMiner'®: Mining max-itemsets.

M. J. Zaki et al., “Parallel algorithms for discovery of association rules,” Data Min. Knowl. Discov., vol. 1, no. 4, pp. 343-373, 1997. DOI: 10.1023/A:1009773317876. [Online]. Available:
https://doi.org/10.1023/A:1009773317876

18, Wang et al., “CLOSET-+: searching for the best strategies for mining frequent closed itemsets,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, August 24 - 27, 2003, L. Getoor et al., Eds., ACM, 2003, pp. 236—245. DOI: 10.1145/956750.956779. [Online]. Available: https://doi.org/10.1145/956750.956779

'®R. J. Bayardo, “Efficiently mining long patterns from databases,” SIGMOD Rec., vol. 27, no. 2, pp. 85-93, Jun. 1998, 1SSN: 0163-5808. DOI: 10.1145/276305.276313. [Online]. Available:
https://doi.org/10.1145/276305.276313
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ECLAT

=A

U

Friedrich-Alexander-Universitat
Technische Fakultat

e Vertical format: t(AB) = {Ty1, Tos, ...}
e Tid-list: list of transaction ids containing an itemset.

¢ Deriving frequent itemsets based on vertical intersections.
o {(X)=1t(Y): X and Y always happen together.
e {(X) = t(Y): transaction having X always has Y.

¢ Using diffset to accelerate mining.

® Only keep track of differences of tids.
L t(X) == {7—17 Tg, T3}, t(XY) = {T1, T3}
e Diffset (XY, X) = {T»}.
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CLOSET (l)
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e F-list: List of all frequent items
in support-ascending? order.

o f-list: d-a-f-e-c. TID | Items

* Divide search space. 10 | acdef
e ltemsets having d. 20 abe
e ltemsets having d but not a, etc. 30 cef

* Find closed itemsets recursively. 40 | acdf
e FEvery transaction having d also has cfa = cfadis a 50 c.ef

closed itemset.
2Note: this is the exact reverse of the f-list ordering in FP-growth.
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¢ [temset merging:.
e [f Y appears in each occurrence of X, then Y is merged with X.
Sub-itemset pruning:
e It X C Y and sup(X) = sup(Y), X and all of X’s
descendants in the set enumeration tree can be pruned.
Item skipping:
e |f a local frequent item has the same support in several header tables at different levels,
one can prune it from the header table at higher levels.

¢ Efficient subset checking.
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1st scan: find frequent items.

e A/B,C,DE

¢ 2nd scan: find support for: TID ltems
e AB, AC, AD, AE, ABCDE 10 | AB,C,D,E
* BC, BD, BE, BCDE 20 | BCDE
e CD, CE, CDE, DE 30 | ACDF

Potential max-itemsets: ABCDE, BCDE, CDE.

Since BCDE is a max-itemset, no need to check BCD,
BDE, CDE in later scan.
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Generating Association Rules EAU
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Friedrich-Alexander-Universitat
Technische Fakultat

¢ Once frequent itemsets from transactions in database D found:

e Generate strong association rules from them,
Where "strong" = satisfying both minimum support and minimum confidence.

support(A = B)
support(A)

confidence(A = B) = P(B|A) =

¢ For each frequent itemset /:
® Generate all nonempty subsets of /.
* Foreverysin/:

e Outputthe rule s = (I — s), if
® min_sup is satisfied, because only frequent itemsets used.
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Interesting Patterns - Example EAN) e
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TID Items
1 Apple, Cereal
2 Bread, Mango, Cereal
3 Cereal, Bread
4 Bread
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Interesting Patterns - Example EAN) e

Technische Fakultat
/e

TID Items
1 Apple, Cereal Bread | No Bread | Sum (Row)
2 Bread, Mango, Cereal Cereal 2000 1750 3750
3 Cereal, Bread — No Cereal | 1000 250 1250
4 Bread Sum (Col.) | 3000 2000 5000
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TID Items
1 Apple, Cereal
2 Bread, Mango, Cereal
3 Cereal, Bread —
4 Bread

Is Bread — Cereal a good rule?

Bread | No Bread | Sum (Row)
Cereal 2000 1750 3750
No Cereal | 1000 250 1250
Sum (Col.) | 3000 2000 5000
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Interesting Patterns - Example
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Friedrich-Alexander-Universitat
Technische Fakultat

TID Items
1 Apple, Cereal
2 Bread, Mango, Cereal
3 Cereal, Bread -
4 Bread

Is Bread — Cereal a good rule?

e Support: 2000/5000 = 40%.
e Confidence: 2000/3000 = 66.7%.

Bread | No Bread | Sum (Row)
Cereal 2000 1750 3750
No Cereal | 1000 250 1250
Sum (Col.) | 3000 2000 5000
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Is Bread — Cereal a good rule?

e Support: 2000/5000 = 40%.

e Confidence: 2000/3000 = 66.7%.
* Problem:

Overall 75% of transactions contain cereal.

=> If bread is present, the likelihood of cereal is actually lower (66.7%).

Misleading due to negative correlation.

TID Items
1 Apple, Cereal Bread | No Bread | Sum (Row)
2 Bread, Mango, Cereal Cereal 2000 1750 3750
3 Cereal, Bread - No Cereal | 1000 250 1250
4 Bread Sum (Col.) | 3000 2000 5000
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Interesting Patterns - Lift EAL) =

[LI//aa\

¢ Idea: Check association rules for positive correlation.
¢ Interestingness measure: Lift

P
Lift(A, B) =

¢ Independence: Lift(A, B) = 1.
* Positive correlation: Lift(A, B) > 1.
* Negative correlation: Lift(4, B) < 1.

® In our example:

2000,/5000 B
3000,/5000 - 3750,/5000

Lift(Bread, Cereal) = 0.89
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e With a small trick, we can also use the y2-test'”’.

¢ In our example:

Bread No Bread Sum (Row)
Cereal 2000 (2250) | 1750 (1500) 3750
No Cereal 1000 (750) 250 (500) 1250
Sum (Col.) 3000 2000 5000
, (2000 —2250)* (1750 — 1500)® (1000 — 750)2 (250 — 500)2
X = + + = 277.78
2250 1500 750 500
Interpretation
e Lookup in the x?-table with df = (2 — 1)(2 — 1) = 1 and & = 0.005 gives 7.879
= Bread and Cereal are correlated.
® The observed value of Bread and Cereal is 2000, while the expected value is 2250.
= Hints at a negative correlation.
7Known from KDDmUe - Lecture 4: Data Preprocessing.
S§S2025 33
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Null-Transaction

¢ A transaction that does not contain any of the itemsets being examined.
e Can outweigh the number of individual itemsets.

Null-Invariance

e A measure is null-invariant, if its value is free from the influence of null-transactions.

e \We also want interestingness measures that are null-invariant.
e Lift and x? are not null-invariant.
e We will take a closer look at the Kulczynski measure (Kulc) and the Imbalance Ratio (IR) as examples
for null-invariant measures'®.

"8 The appendix also contains a list of 20+ measures (some null-invariant. some not). This list is not exam relevant.
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Interesting Patterns - Kulczynski Measure EAN) e

¢ Kulczynski Measure:

sup(AB) , 1 1
2 (sup(A) + sup(B)

Kulc(A, B) =

)

o Interesting rule: Kulc(A, B) close to 0 or 1.
* (Potentially) not very interesting rule: KuIc(A, B) close to 0.5.

¢ In our example:

2000, 1 1
( +
2 °3000 3750

Kulc(Bread, Cereal) = )=0.6
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e Imbalance Ratio:

|sup(A) — sup(B)]

IR(A, B) = sup(A) + sup(B) — sup(AU B)

e (Very) balanced rule: IR(A, B) close to 0.
* (Very) unbalanced rule: IR(A, B) close to 1.

¢ In our example:

13000 — 3750
~ 0.16

IR(Bread, Cereal) = ~
3000 + 3750 — 2000
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Summary E /A

Basic concepts:
® Association rules.
e Support-confidence framework.
e Closed and max-itemsets.
Scalable frequent-itemset-mining methods:
® Apriori:
e Candidate generation & test.
® FP-growth:
¢ Only two scans of the database.
e Other approaches:
e ECLAT, CLOSET, ...

Association rules generated from frequent itemsets.
Which patterns are interesting?
e Pattern-evaluation methods.
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Any questions about this chapter?

Ask them now or ask them later in our forum:

(9 https://www.studon.fau.de/studon/goto.php?target=1code_OLYeD79h
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Apriori Algorithm - Pseudo Code EAN) e

Ck: candidate itemsets of size k
Ly: frequent itemsets of size k

Ly = {frequent items};

for (k = 1; Ly # 0; k++) do begin
Ck+1 = candidates generated from Ly;
for each transaction t in database do
increment the count of all candidates in Cy44 that are contained in t;
Lx4+1 = candidates in Cy.1 with min_sup;
end;

return |J, Ly;
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Other Improved Mining Methods EA) s
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e AFOPT'"
® A "push-right" method for mining condensed frequent-pattern (CFP) tree.
e Carpenter®®
® Mine datasets with small rows but numerous columns.
e Construct a row-enumeration tree for efficient mining.
e FP-growth+'
e Efficiently using prefix-trees in mining frequent itemsets.
¢ TD-Close*

®G. Liu et al., “Afopt: An efficient implementation of pattern growth approach.,” in FIMI/, 2003, pp. 1-10

2°F Pan et al., “Carpenter: Finding closed patterns in long biological datasets,” in Proceedings of the ninth ACM SIGKDD on Ki discovery and data mining, 2003, pp. 637-642

21G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent itemsets,” in FIM/ ‘03, Frequent ltemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent ltemset Mining
Implementations, 19 December 2003, Melbourne, Florida, USA, B. Goethals and M. J. Zaki, Eds., ser. CEUR Workshop Proceedings, vol. 90, CEUR-WS.org, 2003. [Online]. Available:
http://ceur-ws.org/Vol-90/grahne.pdf

224 Lju et al., “Mining interesting patterns from very high dimensional data: A top-down row enumeration approach,” in Proceedings of the Sixth SIAM International Conference on Data Mining, April 20-22,
2006, MD, USA. J. Ghosh et al.. Eds.. SIAM. 2006. pp. 282-293. DOI: 10.1137/1.9781611972764. 25. [Online]. Available: https://doi.org/10.1137/1.9781611972764.25
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Extension of Pattern-growth Mining (I) EAL) =
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Mining closed frequent itemsets and max-patterns.
e FPmax* and FPclose®

* Mining sequential patterns.

e PrefixSpan?*, CloSpan?®, BIDE?®

¢ Mining graph patterns.
e gSpan®’

¢ Constraint-based mining of frequent patterns.
e gPrune®

23@G. Grahne and J. Zhu, “Reducing the main memory consumptions of fpmax*and fpclose,” in Proc. Workshop Frequent ltem Set Mining Implementations (FIMI 2004, Brighton, UK), Aachen, Germany, 2004,
p.75

24J. Han et al., “Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth,” in p of the 17th a on data g, IEEE Pi , NJ, USA, 2001,
pp. 215224

25X, Yan et al., “Clospan: Mining: Closed sequential patterns in large datasets,” in Proceedings of the 2003 SIAM international conference on data mining, SIAM, 2003, pp. 166-177

2. Wang and J. Han, “Bide: Efficient mining of frequent closed sequences,” in P ings. 20th international co on data ing, IEEE, 2004, pp. 79-90

27X. Yan and J. Han, “Gspan: Graph-based substructure pattern mining,” in 2002 IEEE International Conference on Data Mining, 2002. Proceedings., |IEEE, 2002, pp. 721-724

2 Zhu et al., “Gprune: A pushing framework for graph pattern mining.” in Pacific-Asia Conference on Ki Discovery and Data Mining. Springer. 2007, pp. 388-400
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e Computing iceberg data cubes with complex measures.
e Star-cubing®

¢ Pattern-growth-based clustering.
* MaPle®

¢ Pattern-growth-based classification.
e Mining frequent and discriminative patterns®'

29D, Xin et al., “Star-cubing: Computing iceberg cubes by top-down and bottom-up integration.” in Proceedings 2003 VLDB Conference, Elsevier, 2003, pp. 476-487
30J. Pei et al., “Maple: A fast algorithm for maximal pattern-based clustering,” in Thlrdreee international conference on data mining, |EEE, 2003, pp. 259-266
3'H. Cheng et al.. “Discriminative frequent pattern analysis for effective ion,” in 2007 IEEE 23rd international on data i ing. IEEE. 2006, pp. 716-725
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* Over 20 interestingness measures have been proposed®?:

symbol name range formula
P 1p-coefficient —1,1 P(A,B)—P(A)P(B)
- BB BT A
y — P(A.B)P(=A,—B)—P(A,~B)P(-A,B
Q Yule's @ [-1.1] P(A,B)P(—A,—B)+P(A,~B)P(—A,B)
14 Yule's Y [-1.1] V/P(AB)P(~A#B)—/P(A—B)P(=AB)
\/P(A.B)P(=A,—B)++/P(A,~B)P(=A,B)
k Cohen’s k [=1,1] P(A,B)+P(-A,~B)—P(A)P(B)—P(-A)P(-B)
’ 1—P(A)P(B)—P(=A)P(—B)
PS Patetsky-Shapiro’s [-0.25,0.25] P(A, B) — P(A)P(B)
i — P(BIA)—P(B) ~ P(A[B)—P(A)
F Certainty factor [=1,1] max(ZEAL A8 W)
AV Added Value [<05,1] max(P(B[A) — P(B), P(A]B) — P(A))
KosgensQ | [-033,088] | /P(4. 8) max(P(B]4) - P(). PAIE) — P(4))
Goodman-kruskal's [0.1] , maxi P(A;,Bi)+3., max; P(A;,Br)—max; P(A))—maxk P(Bx)
’ 2—max; P(A)—max, P(B,)
P(A;B))
M Mutual information [0,1] X % P(AB) log mhmsy
min(— >, P(A) Tog P(A)) log P(A),— 3, P(B,) Iog P(B) Iog P(B))
32P, Tan et al., “Selecting the right interestingness measure for association patterns,” in Proceedings of the Eighth ACM SIGKDD International C

10.1145/775047.775053. [Online]. Available: https://doi.org/10.1145/775047.775053

on Knowledge Discovery and Data Mining, July 23-26,

2002, Edmonton. Alberta, Canada, ACM, 2002. pp. 32—41. DOI:
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Interestingness Measures - List (ll) EAL) =

[LI//a\\
symbol name range formula
J J-Measure [0,1] max(P(A, B) log = P(B\A) + P(—A, B) log P((ﬁA L-)J)
P(4,B)log P,Sf%‘) L P 5)og )
— max(P(A)[PLETAY: + P BIATI+
G Gini index [0,1] P(—A)[P(B|—A)? + P(—=B|—-A)?|P(B)? — P(—B)?,
P(B)[P(A|B)? + P(—A|B)?]+
P(=B)[P(A|=B)* + P(-A|=B)*] — P(A} — P(=A)?)
s Support 0,1 P(A, B)
Confidence 0,1 max(P(BJA), P(A[B))
NP(A,B)+1 NP(A,B)+1
L Laplace 0,1 max( N;S(A)Z(rz v) N;(E)lz )
Cosi 0.1 P(AB
cos osine [0,1] TrrE
5 coherence(Jaccard) [0,1] WW
" P(AB
a all_confidence [0,1] TPl PE]
o Odds ratio [0,00) %
v Conviction [0.5,00) max(i(*&"gﬂl PLBESA))
- P(A,B,
! - 029 (A,B)+P( )#P(L)()() (—A)P(=B)
" P(A,B)+P(—A—B 1—P(A)P(B)—P(—A)P(—B,
s Collective strength [0, 00) FAPBIFAPLE] . 1—P(AB)—FoAE)
% 5 [o.<) >, PUEEr
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Symbol | Measure Range O1 | 02| O3 | O3 | O4
7 (p-coefficient —1,1] Y[ NTY[]Y]|N
A Goodman-Kruskal's | [0, 1] Y N | N | Y N
et QOdds ratio 0,00) Y| Y |Y|Y|N
Q Yule’s Q —1,1] Y |Y|Y Y N
Y Yule's Y —1,1] Y Y |Y Y N
K Cohen’s —1, 1] Y N N Y N O1: Symmetry under variable permutation.
M Mutual information 0, 1] N N N Y N 02: Row and column scaling invariance.
J J-Measure 0,1] N*“| N|NJ| N[N )
G Gini index 0, 1] N* | N N* v N 03: Antlsymn_wetry under row or column
s | Support 0.1] YIN|N|N|N permutation.
c Confidence 0, 1] N** N N N Y 03’: Inversion invariance
L Laplace 0,1] N | N N Y N 04: Nullinvariance.
v Conviction 0.5, OO) N N N Y N Y*: Yes if measure is normalized.
! Interest 0,00 Y N N N N
cos Cosine 0, 1] v N N N Y N*: Symmetry under row or column
PS | Piatetsky-Shapiro's | [—0.25,0.25] YIN|Y|VY|N permutation.
F Certainty factor —1,1] N* | N N Y N N**: No unless the measure is symmetrized
AV | Added value —0.5,1] N“ | N | N|N|N by taking max(M(4, B), M(B, 4))-
S Collective strength 0, oo] Y N Y Y N
0 Jaccard 0,1 Y N | N N Y
K | Klosgen's [(i] —1)E2—va— L, 2] N[ N | N| N |N
9 V3 31’ 33
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