

4. Data Preprocessing

Knowledge Discovery in Databases with Exercises

Computer Science 6 (Data Management), Friedrich-Alexander-Universität Erlangen-Nürnberg Summer semester 2025

Outline

- 1. Overview
- 2. Data Cleaning
- 3. Data Integration
- 4. Data Reduction
- 5. Data Transformation and Data Discretization
- 6. Summary

Overview

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view:
 - Accuracy: correct or wrong, accurate or not.
 - Completeness: not recorded, unavailable.
 - Consistency: some modified but some not, dangling refs, etc.
 - Timeliness: timely updated?
 - Believability: how trustworthy is it, that the data is correct?
 - Interpretability: how easily can the data be understood?
 - And even many more!

Major Tasks in Data Preprocessing (I)

Data cleaning:

- Fill in missing values.
- Smooth noisy data.
- Identify or remove outliers.
- Resolve inconsistencies.

Data integration:

- Integration of multiple databases.
- Data cubes or files.

Major Tasks in Data Preprocessing (II)

Data reduction:

- · Dimensionality reduction.
- Numerosity reduction.
- Data compression.

Data transformation and data discretization:

- Normalization.
- Concept-hierarchy generation.

Data Cleaning

Dirty Data

- Data in the real world is dirty.
- Lots of different kinds of dirty data:
 - Incomplete data: lacking attributes, lacking values or containing aggregate data.
 - Inconsistencies: containing discrepancies in codes or names.
 - Errors: containing incorrect values.
 - Noise: containing small inaccuracies.
 - Outliers: containing extreme values.

Dirty Data: Incomplete Data

Potential reasons:

- Data not yet available.
- · Technical malfunction.
- Human error.
- etc.

- Ignore the tuple.
- Fill in the missing value manually.
 - Often infeasible.
- Fill in automatically with:
 - · A global constant.
 - The attribute mean
 - The class mean
 - The most probable value.

Mat. Nr.	Age
12345678	23
23061995	25
21241992	
	23
25052025	21
14912780	24

Dirty Data: Incomplete Data

Potential reasons:

- Data not yet available.
- · Technical malfunction.
- Human error.
- etc.

- Ignore the tuple.
- Fill in the missing value manually.
 - Often infeasible.
- Fill in automatically with:
 - · A global constant.
 - The attribute mean
 - The class mean
 - The most probable value.

Mat. Nr.	Age
12345678	23
23061995	25
21241992	
	23
25052025	21
14912780	24

Dirty Data: Inconsistencies

Potential reasons:

- Merging of data from different sources.
- Missing conventions.
- Human error.
- etc

- Manual data cleaning.
- · (Semi-)Automatic data cleaning.
 - Most often common inconsistencies can be detected and solved via rule based approaches.

Applicant	Grade
124	1.0
Michael	2.3
134	3.7
323	A-
174	2.0
123	1.6

Dirty Data: Inconsistencies

Potential reasons:

- Merging of data from different sources.
- Missing conventions.
- Human error.
- etc

- Manual data cleaning.
- · (Semi-)Automatic data cleaning.
 - Most often common inconsistencies can be detected and solved via rule based approaches.

Applicant	Grade
124	1.0
Michael	2.3
134	3.7
323	A-
174	2.0
123	1.6

Dirty Data: Errors

Potential reasons:

- Malfunctions.
- Transmission errors.
- Human error.
- etc.

- Ignore the tuple.
- · Manual data cleaning.
 - · A subject matter expert (SME) is often needed to identify the errors.
- (Semi-)Automatic data cleaning.
 - Errors are often highly case dependent and therefore there is no general solution.

Module	ECTS
EADEIS	5
MoL	5
DL	5
EDB	7.5
KDDmUe	6
POIS	5

Dirty Data: Errors

Potential reasons:

- Malfunctions.
- Transmission errors.
- Human error.
- etc.

- Ignore the tuple.
- Manual data cleaning.
 - · A subject matter expert (SME) is often needed to identify the errors.
- (Semi-)Automatic data cleaning.
 - Errors are often highly case dependent and therefore there is no general solution.

Module	ECTS
EADEIS	5
MoL	5
DL	5
EDB	7.5
KDDmUe	6
POIS	5

Dirty Data: Noise

· Potential reasons:

- Small sensor inaccuracies.
- · Transmission errors.
- etc.

- Data smoothing by:
 - Binning.
 - · Regression.
 - · Clustering.
 - etc.

Time	Temperature
08:01	14.123℃
08:02	14.153℃
08:03	14.163℃
08:04	14.723℃
08:05	14.126℃
08:06	14.463℃

Dirty Data: Noise

· Potential reasons:

- Small sensor inaccuracies.
- · Transmission errors.
- etc.

- Data smoothing by:
 - Binning.
 - · Regression.
 - · Clustering.
 - etc.

Time	Temperature
08:01	14.123℃
08:02	14.153℃
08:03	14.163℃
08:04	14.723℃
08:05	14.126℃
08:06	14.463℃

Dirty Data: Noise

Potential reasons:

- Small sensor inaccuracies.
- · Transmission errors.
- etc.

Potential solutions:

- Data smoothing by:
 - · Binning.
 - · Regression.
 - · Clustering.
 - etc.

Time	Temperature
08:01	14.123℃
08:02	14.153℃
08:03	14.163℃
08:04	14.723℃
08:05	14.126℃
08:06	14.463℃

Errors ⇐⇒ **Noise**

- Noise can be referred to as a special type of error.
- Not every error is noise!

Dirty Data: Outliers

· Potential reasons:

- Errors.
- · Very rare events.

- If an error, treat them as one.
- If a rare event, the outlier is interesting and can be used for further analysis.

Year	Max. Temp.
2026	32℃
2027	34℃
2028	33℃
2029	35℃
2030	61 <i>°</i> C
2031	36℃

Dirty Data: Outliers

· Potential reasons:

- Errors.
- · Very rare events.

- If an error, treat them as one.
- If a rare event, the outlier is interesting and can be used for further analysis.

Year	Max. Temp.
2026	32℃
2027	34℃
2028	33℃
2029	35℃
2030	61 <i>°</i> C
2031	36℃

Dirty Data: Outliers

Potential reasons:

- Errors.
- Very rare events.

Potential solutions:

- If an error, treat them as one.
- If a rare event, the outlier is interesting and can be used for further analysis.

Year	Max. Temp.
2026	32 <i>°</i> C
2027	34 <i>°</i> C
2028	33℃
2029	35℃
2030	61 <i>°</i> C
2031	36℃

Errors ⇔ Outliers

- · Outliers might indicate errors.
- Not every outlier is an error!

Data Cleaning as a Process (I)

Data discrepancy detection:

- Use metadata (e.g. domain, range, dependency, distribution).
- · Check field overloading.
- Check uniqueness rule, consecutive rule and null rule.
- Use commercial tools:
 - Data scrubbing: use simple domain knowledge (e.g. postal code, spell-check) to detect errors and make corrections.
 - Data auditing: by analyzing data to discover rules and relationships to detect violators (e.g. correlation and clustering to find outliers).

Data Cleaning as a Process (II)

Data migration and integration:

- Data-migration tools: allow transformations to be specified.
- ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface.

Integration of the two processes.

• Iterative and interactive (e.g. the Potter's Wheel tool).

Data Integration

Data Integration

Data integration:

• Combine data from multiple sources into a coherent store.

Schema integration:

- Integrate metadata from different sources.

• Entity-identification problem:

- Identify the same real-world entities from multiple data sources.
- E.g. Bill Clinton = William Clinton.

Detecting and resolving data-value conflicts:

- For the same real world entity, attribute values from different sources are different.
- · Possible reasons:
 - Different representations (coding).
 - Different scales, e.g. metric vs. British units.

Handling Redundancy in Data Integration

- Redundant data often occur when integrating multiple databases.
 - Object (entity) identification:

The same attribute or object may have different names in different databases.

Derivable data:

One attribute may be a "derived" attribute in another table. E.g. annual revenue.

- Redundant attributes:
 - Can be detected by correlation analysis and covariance analysis.
- Careful integration of the data from multiple sources:
 - Helps to reduce/avoid redundancies and inconsistencies and improve mining speed and quality.

• Example:

We want to determine if the interests "Reads Books" and "Plays Chess" in the following table correlate with each other:

ID	Reads Books	Plays Chess
1	Y	Y
2	Y	Y
3	Υ	N
1499	N	Y
1500	N	N

General starting point:

- . The attributes A and B to be analyzed:
 - A has n distinct values: $A := \{a_1, a_2, \dots, a_n\}$, where $n \in \mathbb{N}_{\geq 1}$.
 - B has m distinct values: $B := \{b_1, b_2, \dots, b_m\}$, where $m \in \mathbb{N}_{\geq 1}$.
- The set X of all distinct combinations:
 - X is defined as follows: $X := \{(a, b) \mid a \in A \text{ and } b \in B\}.$
- The multi set Y of all tuples:
 - The multiset Y over the set X is a mapping of X to the set of natural numbers \mathbb{N}_0 . The number $Y(x), x \in X$ tells how often x is contained in the multiset Y.

Starting point in the example:

- The attributes A and B to be analyzed:
 - A ("Reads Books") has 2 distinct values:
 A := { Y, N}
 - B ("Plays Chess") has 2 distinct values:
 B := {Y, N}
- The set X of all distinct combinations:
 - X contains 4 distinct combinations: $X := \{(Y, Y), (Y, N), (N, Y), (N, N)\}.$
- The multi set Y of all tuples:
 - Y contains 1500 tuples: $Y := \{(Y, Y), (Y, Y), \dots, (N, N)\}.$

Actual quantity in Y:

$$c_{ij} = \#\{(a,b) \in Y \mid a = a_i, b = b_i\} = Y((a_i,b_i))$$

• Expected quantity (value of c_{ii}) in case of independence, i. e. no correlation:

$$e_{ij} = \frac{\sum_{k=1}^{m} c_{ik}}{\#Y} \cdot \frac{\sum_{l=1}^{n} c_{lj}}{\#Y} \cdot \#Y = \frac{\sum_{k=1}^{m} c_{ik} \cdot \sum_{l=1}^{n} c_{lj}}{\#Y}$$

Please note that:

• The sum of all c_{ii} over an attribute a_i (or b_i) is identical to the sum of all e_{ii} over a_i (or b_i):

$$\sum_{k=1}^{m} e_{ik} = \sum_{k=1}^{m} c_{ik}$$
 and $\sum_{l=1}^{n} e_{lj} = \sum_{l=1}^{n} c_{lj}$

• The values c_{ij} and e_{ij} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^m e_{nj}$	$\sum_{i=1}^n \sum_{j=1}^m e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (e ₁₁)	200 (e ₂₁)	450
Doesn't Read Books	50 (<i>e</i> ₁₂)	1000 (<i>e</i> ₂₂)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\#Y} = \frac{\cdot}{} =$$

• The values c_{ii} and e_{ii} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^m e_{nj}$	$\sum_{i=1}^n \sum_{j=1}^m e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (<i>e</i> ₁₁)	200 (e ₂₁)	450
Doesn't Read Books	50 (<i>e</i> ₁₂)	1000 (<i>e</i> ₂₂)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\# Y} = \frac{300 \cdot }{} =$$

• The values c_{ii} and e_{ii} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^{m} e_{nj}$	$\sum_{i=1}^{n}\sum_{j=1}^{m}e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (<i>e</i> ₁₁)	200 (<i>e</i> ₂₁)	450
Doesn't Read Books	50 (<i>e</i> ₁₂)	1000 (<i>e</i> ₂₂)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\# Y} = \frac{300 \cdot 450}{} =$$

• The values c_{ij} and e_{ij} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^{m} e_{nj}$	$\sum_{i=1}^{n}\sum_{j=1}^{m}e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (<i>e</i> ₁₁)	200 (e ₂₁)	450
Doesn't Read Books	50 (<i>e</i> ₁₂)	1000 (<i>e</i> ₂₂)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\#Y} = \frac{300 \cdot 450}{1500} =$$

• The values c_{ii} and e_{ii} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^m e_{nj}$	$\sum_{i=1}^n \sum_{j=1}^m e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (90)	200 (e ₂₁)	450
Doesn't Read Books	50 (<i>e</i> ₁₂)	1000 (<i>e</i> ₂₂)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\# Y} = \frac{300 \cdot 450}{1500} = 90$$

• The values c_{ij} and e_{ij} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^m e_{nj}$	$\sum_{i=1}^n \sum_{j=1}^m e_{ij}$

• In our example it would look like this:

	Plays Chess	Doesn't Play Chess	Sum (Row)
Reads Books	250 (90)	200 (360)	450
Doesn't Read Books	50 (210)	1000 (840)	1050
Sum (Column)	300	1200	1500

$$e_{11} = \frac{\sum_{k=1}^{m} c_{1k} \cdot \sum_{l=1}^{n} c_{l1}}{\#Y} = \frac{300 \cdot 450}{1500} = 90$$

• To determine the correlation the χ^2 -test (Chi-squared test) is applied:

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^m \frac{(c_{ij} - e_{ij})^2}{e_{ij}}.$$

• Calculation of χ^2 in our example:

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93.$$

Null hypothesis of the χ^2 -test

- The χ^2 -test is used to test the null hypothesis H_0 of independence (i.e. no correlation).
- Which χ^2 value indicates correlation?
 - The χ^2 value is compared with a critical value from the χ^2 distribution (see table on the next slide).
 - Before that is done the degrees of freedom (df) must be calculated:

$$df = (n-1) \cdot (m-1)$$

Where *n* is the count of distinct values in *A* and *m* of distinct values in *B*.

• And a significance level α must be defined (e.g. $\alpha =$ 0.005).

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

$\mathrm{df}/lpha$	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

$\mathrm{df}/lpha$	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

• We set the significance level to $\alpha = 0.005$

df $/lpha$	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

• We set the significance level to $\alpha = 0.005$

df/α	0.025	0.010	0.005
ui, a			
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

- We set the significance level to $\alpha = 0.005$
- The critical value from the χ^2 distribution¹ is:

$$\chi^2_{0.005,1} = 7.879.$$

df $/lpha$	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589
	10.020	21.000	20.000

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

- We set the significance level to $\alpha = 0.005$
- The critical value from the χ^2 distribution¹ is:

$$\chi^2_{0.005,1} = 7.879.$$

• Our χ^2 -value is bigger than the critical value:

$$\chi^2 = 507.93 > 7.879.$$

df/lpha	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

¹Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

• In our example:

• The degrees of freedom (df) are:

$$df = (2-1) \cdot (2-1) = 1.$$

- We set the significance level to $\alpha =$ 0.005
- The critical value from the χ^2 distribution¹ is:

$$\chi^2_{0.005,1} = 7.879.$$

• Our χ^2 -value is bigger than the critical value:

$$\chi^2 = 507.93 > 7.879.$$

 Therefore we reject the null hypothesis H₀ and conclude that there is correlation between the two attributes.

${\sf df}/lpha$	0.025	0.010	0.005
1	5.024	6.635	7.879
2	7.378	9.210	10.597
3	9.348	11.345	12.838
4	11.143	13.277	14.860
5	12.833	15.086	16.750
6	14.449	16.812	18.548
7	16.013	18.475	20.278
8	17.535	20.090	21.955
9	19.023	21.666	23.589

Good link for a full table: https://www.hawkeslearning.com/documents/statdatasets/stat_tables.pdf

Correlation Analysis of Numerical Data (I)

Numerical correlation can be determined with Pearson's product-moment coefficient:

$$\operatorname{Cor}(A,B) = \frac{\sum_{i=1}^{n} (a_i - \mu_A)(b_i - \mu_B)}{n \cdot \sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} a_i b_i - n \cdot \mu_A \mu_B}{n \cdot \sigma_A \sigma_B}.$$

where n is the number of tuples, a_i and b_i are the respective values of A and B in tuple i, μ_A and μ_B are the respective mean values of A and B, σ_A and σ_B B are the respective standard deviations of A and B

Properties of Pearson's product-moment coefficient

- If Cor(A, B) > 0: A and B are positively correlated (the closer to 1, the stronger the correlation).
 If Cor(A, B) = 0: A and B are independent.
- If Cor(A, B) < 0: A and B are negatively correlated (the closer to -1, the stronger the correlation).

Correlation Analysis of Numerical Data (II)

• It is also possible to visually detect numerical correlation:

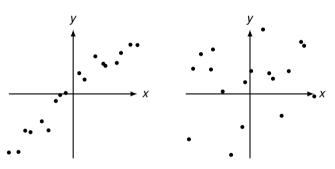


Figure: a) Positive correlation.

Figure: b) Uncorrelated/no correlation.

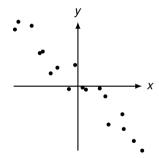
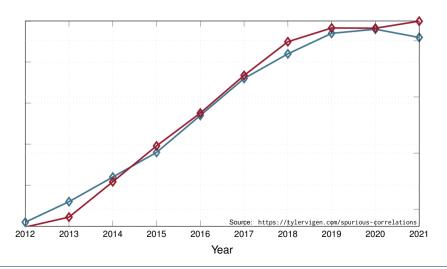
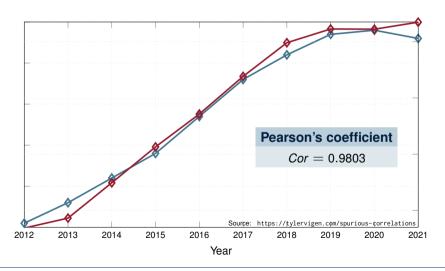
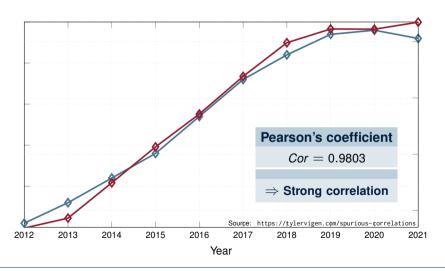
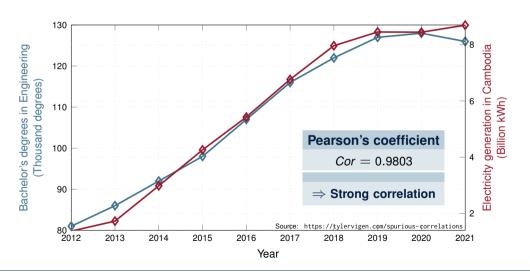


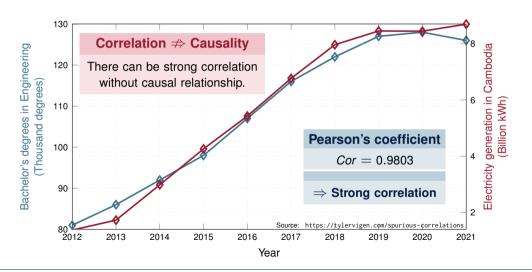
Figure: c) Negative correlation.











Data Reduction

Data Reduction (I)

• What is data reduction?

 Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) results.

Why data reduction?

- A database/data warehouse may store terabytes of data.
- Complex data analysis may take a very long time to run on the complete data set.

Data reduction strategies:

- Dimensionality reduction, i.e. remove unimportant attributes.
 - Wavelet transforms
 - Principal component analysis.
 - Attribute subset selection or attribute creation.

Data Reduction (II)

Data reduction strategies (continued):

- Numerosity reduction:
 - Regression and log-linear models.
 - · Histograms, clustering and sampling.
 - Data cube aggregation.
- Data compression.

Data Reduction (I): Dimensionality Reduction

Curse of dimensionality:

- When dimensionality increases data becomes increasingly sparse.
- Density and distance between points become less meaningful.
- The possible combinations of subspaces will grow exponentially.

Dimensionality reduction:

- Avoid the curse of dimensionality.
- Help eliminate irrelevant features and reduce noise.
- Reduce time and space required in data mining.
- Allow easier visualization.

Dimensionality-reduction techniques:

- Wavelet transforms
- Principal component analysis.
- Supervised and nonlinear techniques (e.g. feature selection).

Wavelet Transform

Discrete wavelet transform:

Transforms a vector X into a different vector X' of wavelet coefficients with the same length.

- Compressed approximation:
 - Store only a small fraction of the strongest of the wavelet coefficients.
- Similar to discrete fourier transform, but better lossy compression, localized in space.
- Method:
 - The length of the vector must be an integer power of 2 (padding with 0's if necessary).
 - Each transform has two functions: smoothing and difference.
 - Applied to pairs of data, resulting in two sets of data with half the length.
 - The two functions are applied recursively until reaching the desired length.

Example: Wavelet Transform (I)

Initial vector:

•
$$X = (2, 2, 0, 2, 3, 5, 4, 4)$$

• First step:

- $A_1 = (2, 1, 4, 4), D_1 = (0, -1, -1, 0)$

Second step:

- (2,1) → Average: 1.5, Weighted difference: 0.5
 (4,4) → Average: 4, Weighted difference: 0
- $A_2 = (1.5, 4), D_2 = (0.5, 0)$

Example: Wavelet Transform (II)

- Third step:
 - $(1.5, 4) \rightarrow$ Average: 2.75, Weighted difference: -1.25
 - $A_3 = (2.75), D_3 = (-1.25)$
- Resulting vector:
 - X' = (2.75, -1.25, 0.5, 0, 0, -1, -1, 0)
- Possible compression:
 - Small detail coefficients (D_{1,2,3}) can be replaced by 0's, while retaining significant coefficients.

Resolution	Averages	Detail coefficients
8	(2,2,0,2,3,5,4,4)	-
4	(2, 1, 4, 4)	(0,-1,-1,0)
2	(1.5, 4)	(0.5, 0)
1	(2.75)	(-1.25)

Principal Component Analysis (PCA)

Main idea:

- Given a data set with n dimensions.
- Find $k \le n$ orthogonal vectors that capture the largest amount of data.
- · Works only for numeric data.

Example data set:

Used on the next few slides to explain the steps of a PCA:

d_1	d_2	d_3
23	6	1
9	9	5
17	5	1
3	6	1

PCA - 1. Step: Standardization (I)

Procedure:

Each value x within a dimension d_n is standardized with the help of the mean (μ_{d_n}) and standard deviation (σ_{d_n}) of d_n:

$$x' = \frac{x - \mu_{d_n}}{\sigma_{d_n}}$$

Reason:

- Each dimension should be considered equally in the analysis.
- Dimensions with a wider range of values would dominate without this step.

PCA - 1. Step: Standardization (II)

• Example:

• Mean and standard deviation per dimension:

	d_1	d_2	d_3
μ	13.000000	6.500000	2.0
σ	8.793937	1.732051	2.0

Standardized data set:

d_1	d_2	d_3
+1.137147	-0.288675	-0.5
-0.454859	+1.443376	+1.5
+0.454859	-0.866025	-0.5
-1.137147	-0.288675	-0.5

PCA - 2. Step: Covariance Matrix (I)

Procedure:

 A n x n covariance matrix is generated that contains the covariance between each possible attribute pairing. When the dimensions are compared with themselves, the variance always replaces the covariance:

$$\begin{bmatrix} \operatorname{Var}(d_1) & \dots & \operatorname{Cov}(d_1, d_n) \\ \dots & \dots & \dots \\ \operatorname{Cov}(d_n, d_1) & \dots & \operatorname{Var}(d_n) \end{bmatrix}$$

Reason:

- Dimensions that are highly correlated contain redundant information.
- This step helps to identify these correlations.

PCA - 2. Step: Covariance Matrix (II)

• Example:

• The 3 x 3 covariance matrix of our example:

	d_1	d_2	<i>d</i> ₃
d_1	+1.000000	-0.350150	-0.303239
d_2	-0.350150	+1.000000	+0.962250
d_3	-0.303239	+0.962250	+1.000000

PCA - 3. Step: Eigenvalues (I)

Procedure:

 The eigenvectors and eigenvalues of the covariance matrix (C) are computed by solving the following equation:

$$C\nu = \lambda \nu$$

• If an n digit vector ν satisfies this equation for a $\lambda \in \mathbb{R}$, then ν is called an eigenvector with associated eigenvalue λ

· Reason:

- The determined eigenvectors are called principal components of the dataset. The eigenvalues
 indicate which of these principal components has which importance for the significance of the dataset.
- By sorting the eigenvectors in descending order according to their eigenvalues, the principal components that contain the most information can be identified.

PCA - 3. Step: Eigenvalues (II)

• Example:

• Eigenvalues and eigenvectors in our example:

$$\lambda_1 = +2.14823654, \nu_1 = \begin{bmatrix} +0.37342507 \\ -0.92684562 \\ -0.03887043 \end{bmatrix}$$

$$\lambda_2 = +0.81530433, \nu_2 = \begin{bmatrix} -0.66009198 \\ -0.23604255 \\ -0.71313568 \end{bmatrix}$$

$$\lambda_3 = +0.03645914, \nu_3 = \begin{bmatrix} -0.6517916 \\ -0.2919608 \\ +0.69994757 \end{bmatrix}$$

• Sorting these three eigenvectors by their significance, we arrive at the order ν_1 , ν_2 , ν_3

PCA - 4. Step: Feature matrix (I)

Procedure:

- The top N eigenvectors are selected to create a feature matrix from them.
- There is no fixed rule exactly how many eigenvectors should be selected.
- The dimensionality reduction is larger the fewer eigenvectors are chosen.
- The information loss increases with each eigenvector that is discarded.

Reason:

 It must be considered carefully how much information can be given up in favor of dimensionality reduction.

PCA - 4. Step: Feature matrix (II)

• Example:

• In our example ν_1 carries approx. 72% of the information:

$$\frac{2.14823654}{2,14823654+0,81530433+0,03645914}=0.71607885$$

 It might be interesting to keep only the eigenvector ν₁ and discard the other two eigenvectors. Our feature matrix therefore looks as follows:

$$\begin{bmatrix} +0.37342507 \\ -0.92684562 \\ -0.03887043 \end{bmatrix}$$

PCA - 5. Step: Transformation (I)

Procedure:

 The original data set (D) gets multiplied with the feature matrix (F), to create a new data set (N) with lower dimensionality:

$$N = D \cdot F$$

Reason:

- This step applies the dimensionality reduction to each tuple.
- The PCA is completed with this step.

PCA - 5. Step: Transformation (II)

• Example:

• Our dataset after the transformation and with the PCA completed looks like this:

• It is to be expected that this dataset still contains about 72% of its original information, which can be further used for data mining, while having to deal with a lot less dimensions.

Attribute-Subset Selection

- Another way to reduce dimensionality of data.
- Redundant attributes:
 - Duplicate much or all of the information contained in other attributes.
 - E.g. purchase price of a product and the amount of sales tax paid.
- Irrelevant attributes:
 - contain no information that is useful for the data-mining task at hand.
 - E.g. students' ID is often irrelevant to the task of predicting students' GPA.

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes.
- Typical heuristic attribute-selection methods:
 - Best single attribute under the attribute-independence assumption: choose by significance tests (e.g. t-test, see Chapter 7 "Classification").
 - Best step-wise feature selection:
 - The best single attribute is picked first.
 - Then next best attribute condition to the first
- Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute.
- Best combined attribute selection and elimination.
- Optimal branch and bound:
 - Use attribute elimination and backtracking.

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones.
- Three general methodologies:
 - Attribute extraction.
 - · Domain-specific.
 - Mapping data to new space (see: data reduction).
 - E.g. Fourier transformation, wavelet transformation, manifold approaches (not covered).
 - Attribute construction:
 - Combining features (see: discriminative frequent patterns in Chapter 5).
 - Data discretization

Data Reduction (II): Numerosity Reduction

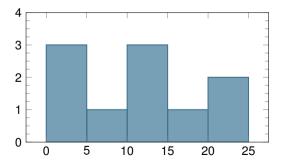
- Reduce data volume by choosing alternative, smaller forms of data representation.
- Parametric methods (e.g., regression):
 - Assume the data fits some model (e.g. a function).
 - Estimate model parameters.
 - Store only the parameters.
 - Discard the data (except possible outliers):
 - Ex. log-linear models obtain value at a point in m-dimensional space as the product of appropriate marginal subspaces.
- Non-parametric methods:
 - Do not assume models.
 - Major families: histograms, clustering, sampling, . . .

Histogram Analysis

- Divide data into buckets and store aggregate (e.g. average) of each bucket.
- Two different partitioning rules:
 - Equal-width: equal width of each bucket.
 - Equal-frequency (or equal-depth): equal number of tuples in each bucket.

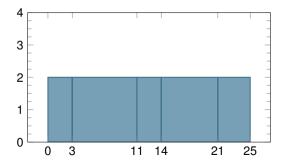
Histogram Analysis

- Divide data into buckets and store aggregate (e.g. average) of each bucket.
- Two different partitioning rules:
 - Equal-width: equal width of each bucket. ←
 - Equal-frequency (or equal-depth): equal number of tuples in each bucket.



Histogram Analysis

- Divide data into buckets and store aggregate (e.g. average) of each bucket.
- Two different partitioning rules:
 - Equal-width: equal width of each bucket.
 - Equal-frequency (or equal-depth): equal number of tuples in each bucket. \leftarrow



Clustering

- Partition data set into clusters based on similarity and store cluster representation (e.g., centroid and diameter) only.
 - Can be very effective if data points are close to each other under a certain norm and choice of space.
 - Can have hierarchical clustering and be stored in multidimensional index-tree structures.
 - There are many choices of clustering algorithms.
 - Cluster analysis will be studied in depth in Chapter 7.

Sampling

- Obtain a small sample *x* to represent the whole data set *X*.
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data.
- Key principle: Choose a representative subset of the data.
 - Simple random sampling may have very poor performance in the presence of skew.
 - Develop adaptive sampling methods, e.g. stratified sampling.
- Note: Sampling may not reduce database I/Os.
 - One page at a time.

Types of Sampling

- Simple random sampling.
 - There is an equal probability of selecting any particular item.
- Sampling without replacement.
 - Once an object is selected, it is removed from the population.
- Sampling with replacement.
 - A selected object is not removed from the population.
- Stratified sampling:
 - Partition the data set and draw samples from each partition: Proportionally, i.e. approximately the same percentage of the data.
 - Used in conjunction with skewed data.

Data Reduction (III): Data Compression

- String compression.
 - There are extensive theories and well-tuned algorithms.
 - Typically lossless, but only limited manipulation is possible without expansion.
- Audio/video compression.
 - Typically lossy compression, with progressive refinement.
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole.
- Time sequence is not audio.
 - Typically short and varies slowly with time.
- Dimensionality and numerosity reduction may also be considered as forms of data compression.

Data Transformation and Data Discretization

Data Transformations

Functions applied to a finite set of samples.

Methods:

- Smoothing: Remove noise from data.
- Attribute/feature construction: New attributes constructed from the given ones.
- Aggregation: Summarization, data-cube construction.
- Normalization: Scaled to fall within a smaller, specified range.
 - · Min-max normalization
 - Z-score normalization.
 - · Normalization by decimal scaling.
- Discretization: concept-hierarchy climbing.

Normalization

Min-max normalization (to some interval [min, max]):

$$a_{\mathsf{new}} = rac{a - \mathsf{min}_{\mathcal{A}}}{\mathsf{max}_{\mathcal{A}} - \mathsf{min}_{\mathcal{A}}} (\mathsf{max} - \mathsf{min}) + \mathsf{min} \,.$$

Example: let income range from \$12,000 to \$98,000 normalized to [0,1].

Then \$73,600 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1-0)+0=0.716$.

• Z-score normalization:

$$a_{\text{new}} := z(a) = \frac{a - \mu_A}{\sigma_A}$$
, with μ being the mean and σ the standard deviation.

Example: let $\mu = 54,000$ and $\sigma = 16,000$. Then $\frac{73,000-54,000}{16,000} = 1.188$.

Normalization by decimal scaling:

$$a_{\text{new}} = \frac{a}{10^k}$$
, where k is the smallest integer such that $\max(|a_{\text{new}}|) < 1$.

Discretization

Three types of attributes:

- Nominal values from an unordered set, e.g. color, profession.
- Ordinal values from an ordered set, e.g. military or academic rank.
- Numerical numbers, e.g. integer or real numbers.

• Divide the value range of a continuous attribute into intervals:

- Interval labels can then be used to replace actual data values.
- Reduce data size by discretization.
- Supervised vs. unsupervised.
- Split (top-down) vs. merge (bottom-up).
- Discretization can be performed recursively on an attribute.
- Prepare for further analysis, e.g. classification.

Data-Discretization Methods

Typical methods:

- All the methods can be applied recursively.
- Binning:
 - · Unsupervised, top-down split.
- Histogram analysis:
 - Unsupervised, top-down split.
- Clustering analysis:
 - Unsupervised, top-down split or bottom-up merge.
- Decision-tree analysis:
 - Supervised, top-down split.
- Correlation (e.g. χ^2) analysis:
 - Unsupervised, bottom-up merge.

Simple Discretization: Binning

• Equal-width (distance) partitioning:

- Divides the range into N intervals of equal size: uniform grid.
- If A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = \frac{(B-A)}{A}$.
- The most straightforward, but outliers may dominate presentation.
- Skewed data is not handled well.

Equal-depth (frequency) partitioning:

- Divides the range into N intervals, each containing approximately the same number of samples.
- Good data scaling.
- Managing categorical attributes can be tricky.

Binning Methods for Data Smoothing

Sorted data for price (in dollars):

Partition into equal-frequency (equal-depth) bins:

Bin 1: 4, 8, 9, 15,

Bin 2: 21, 21, 24, 25,

Bin 3: 26, 28, 29, 34.

Smoothing by bin means:

Bin 1: 9, 9, 9, 9.

Bin 2: 23, 23, 23, 23,

Bin 3: 29, 29, 29, 29.

Smoothing by bin boundaries:

Bin 1: 4, 4, 4, 15.

Bin 2: 21, 21, 25, 25,

Bin 3: 26, 26, 26, 34.

Classification & Correlation Analysis

Classification:

- E.g. decision-tree analysis.
- Supervised: Class labels given for training set e.g. cancerous vs. benign.
- Using **entropy** to determine split point (discretization point).
- Top-down, recursive split.
- Details will be covered in Chapter 6.

Correlation analysis:

- E.g. χ^2 -merge: χ^2 -based discretization.
- Supervised: use class information.
- Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge.
- Merge performed recursively, until a predefined stopping condition.

57

Concept-hierarchy Generation

Concept hierarchy:

- Organizes concepts (i.e. attribute values) hierarchically.
- Usually associated with each dimension in a data warehouse.
- Facilitates drilling and rolling in data warehouses to view data at multiple granularity.

• Concept-hierarchy formation:

- Recursively reduce the data by collecting and replacing low-level concepts (such as numerical values for age) by higher-level concepts (such as youth, adult, or senior).
- Can be explicitly specified by domain experts and/or data-warehouse designers.
- Can be automatically formed for both numerical and nominal data.
- For numerical data, use discretization methods shown.

Concept-hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts.
 - $\#(\text{streets}) \prec \#(\text{city}) \prec \#(\text{state}) \prec \#(\text{country})$.
- Specification of a hierarchy for a set of values by explicit data grouping.
 - #({" Urbana", " Champaign", " Chicago"}) ≺ #(Illinois).
- Specification of only a partial set of attributes.
 - Only #(street) ≺ #(city), not others.
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values.
 - E.g. for a set of attributes: {street, city, state, country}.
 - · See on the next slides.

Automatic Concept-hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute.
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy.
 - Exceptions, e.g. weekday, month, quarter, year.
- Example:

$$\#(\text{streets}) = 674.339 > \#(\text{city}) = 3567, \ \#(\text{city}) = 3567 > \#(\text{province or state}) = 356, \ \#(\text{province or state}) = 356 > \#(\text{country}) = 15.$$

Summary

Summary

- Data quality: Accuracy, completeness, consistency, timeliness, believability, interpretability.
- Data cleaning: E.g. missing/noisy values, outliers.
- Data integration from multiple sources:
 - Entity identification problem.
 - · Remove redundancies.
 - · Detect inconsistencies.
- Data reduction:
 - Dimensionality reduction.
 - Numerosity reduction.
 - · Data compression.
- Data transformation and data discretization:
 - Normalization.
 - Concept-hierarchy generation.

Any questions about this chapter?

Ask them now or ask them later in our forum:

• https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h

D. Probst | CS6 | KDDmUe 4. Preprocessing | Version 333648c SS2025