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What is a Data Warehouse? EAN) e

William “Bill” H. Inmon is commonly referred to as the “father of the data warehouse”.

Data Warehouse

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in
support of management’s decision-making process.! Common abbreviations: DW or DWH.

Other definitions exist:

® “A data warehouse is a system that extracts, cleans, conforms, and delivers source data into a dimensional
data store and then supports and implements querying and analysis for the purpose of decision making.”?

® A decision-support database that is maintained separately from the organization’s operational database.
® Supports information processing by providing a solid platform of consolidated, historical data for analysis.

Data warehousing: The process of constructing and using data warehouses.

"W. H. Inmon, Building the Data Warehouse. Wiley, 2005, 4th edition, ISBN: 978-076459-944-6
2R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical Technic for ing. Cleaning. Ct ing. and Delivering Data. Wiley, 2004. ISBN: 978-0764567575
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Data Warehouse — Subject-oriented EAN) e
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e Organized around major subjects. Such as customer, product, sales.

¢ Focusing on the modeling and analysis of data for decision makers. Not on daily operations or
transaction processing.

¢ Provide a simple and concise view around particular subject issues. By excluding data that are
not useful in the decision-support process.
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Data Warehouse — Integrated EAN) e

¢ Constructed by integrating multiple heterogeneous data sources.
® Relational databases, flat files, online transaction records, ...

¢ Data-cleaning and data-integration techniques are applied.
e Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among
different data sources.
® E.g., hotel price: currency, tax, breakfast covered.
* \When data is moved to the data warehouse, it is converted.
e ETL — Extract, Transform, Load.
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Data Warehouse — Time-Variant EAN) e

¢ The time horizon for a data warehouse is significantly longer than that of operational
systems.

e QOperational database: current-value data.
e Data warehouse: provide information from a historical perspective, e.g. past 5 — 10 years.

e Every key structure in the data warehouse contains an element of time, explicitly or implicitly.
® The key of operational data may or may not contain a "time element."
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Data Warehouse — Nonvolatile EAN) e
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* A physically separate store of data.
® Transformed from the operational environment.
e By copying.
* No operational update of data:
® Hence, does not require transaction processing,
i.e. no logging, recovery, concurrency control, etc.
® Requires only three operations:

1. Initial loading of data.
2. Refresh (update, often periodically, e.g. over night).
3. Access of data.
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Three kinds of data warehouse applications.
1. Information processing.

e Supports querying, basic statistical analysis, and
reporting using crosstabs, tables, charts and graphs.

2. Analytical processing.
e Multidimensional analysis of data warehouse data.
e Supports basic OLAP operations such as slicing, dicing, drilling, and pivoting.
3. Data mining.
e Knowledge discovery from hidden patterns.
e Supports associations, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.
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OLTP OLAP
Users clerk, IT professional knowledge worker
Function day-to-day operations decision support
DB Design application-oriented decision support
Data current, up-to-date; detailed, flat re- | historical; summarized, multidimen-
lational; isolated sional, integrated, consolidated
Usage repetitive ad-hoc
Access read/write; index/hash on primary | lots of scans
key
Unit of Work short, simple transaction complex query
#-Records Accessed | 10 10°
#-Users 1000 100
DB Size 100 MB to GB 100 GBto TB
Quantification transaction throughput query throughput, response

OLTP = Online Transaction Processing, OLAP = Online Analytical Processing

D.Probst | CS6 | KDDS5.OLAP

$82025




Why a Separate Data Warehouse? |IE/A\U Tecmiccne Pt e
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High performance for both systems:

e DBMS: tuned for OLTP; Access methods, indexing concurrency control, recovery.

e Data Warehouse: tuned for OLAP; Complex OLAP queries, multidimensional view, consolidation.
Different functions and different data:

* Missing data (DBMS): Decision support (DS) requires historical data which operational DBs do not
typically maintain.

e Data consolidation (warehouse): DS requires consolidation (aggregation, summarization) of data
from heterogeneous sources.

e Data quality (warehouse): Different sources typically use inconsistent data representations, codes
and formats which have to be reconciled.

Note
There are more and more systems which perform OLAP analysis directly on relational databases.
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Three Data Warehouse Models |E/A\U Techniscne Fouat o
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1. Enterprise Warehouse:

e Collects all of the information about subjects spanning the entire organization.
2. Data Mart:

e A subset of corporate-wide data that is of value to a specific group of users.

e Typically contains (highly) summarized data.
® |ndependent vs. dependent (directly from warehouse) data mart.
3. Virtual Warehouse:

® Also known as data virtualization.

e A set of views over operational databases.
As an operational database are all data sources considered that summarize, serve, and access up-to-date and real-time data.
Generally, these are OLTP systems that provide ACID properties. These systems include, but are not limited to relational
databases, NoSQL databases, but also unstructured data.

® Only some of the possible summary views may be materialized.
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Extract, Transform, and Load (ETL) |E/A\U Tecmiccne Pt e
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Extract Data:
e Get data from multiple, heterogeneous, and external sources.
Clean Data:
e Detect errors in the data and rectify them if possible.
Transform Data:
e Convert data from legacy or host format to warehouse format.
Load Data:
e Sort, summarize, consolidate, compute views, check integrity, and build indexes and partitions.
Refresh Data:
e Propagate only the updates from the data sources to the warehouse.

D. Probst
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Generally speaking:
Metadata
Data about data.

Three types: business, process execution, and
technical metadata. Business Metadata

e Business terms and definitions.
¢ Logical data mapping.

Process Execution Metadata

Data acquisition schedule.
Data-cleaning specifications.
Aggregate specifications.

Slowly changing dimensions policies.

Duration of ETL / rows rejected and
successful.

Technical Metadata

e Data ownership. e Table structures and table attributes.
e Charging policies. ¢ Derived data definitions.
® Results from data profiling.
¢ Data lineage.
3C.f. chapter 9 of R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical for Cleaning. C and Delivering Data. Wiley, 2004. 1SBN: 978-0764567575
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Data Warehouse Reference Overview
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Data Warehouse Modeling: Data Cube and OLAP
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e Data warehouse is based on a multidimensional data model

e |t views data in the form of a data cube.
e A data cube contains two different kinds of data:
e Dimensions: Information that can be used to group the data.

¢ A dimension often comes with different levels of granularity.
e Example: Time (Granularity levels: day, month, quarter, year).

e Facts: Information that can be aggregated.
e Example: Price.
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Example: 3-D Data Cube
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Imagine:

e 3-D coordinate system
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Example: 3-D Data Cube
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(Rome/Lazio/ltaly, 23/06/2Q/2024, ePhone 16/Phone) - (1250€)
.

Time

(Er i 1y, 01/05/2Q/2023, Series 8/Washer) - (430€)

Region

Dimensional Values:

® Used to locate data points

® Example:
Erlangen/Bavaria/Germany,
01/05/2Q/2023,
Series 8/Washer

Facts:

e Used to describe data points
e Example: 430€
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Example: 3-D Data Cube
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A Real Data Cube:

e Contains a lot of data points
e Many more than shown ...
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Example: 3-D Data Cube
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Time

Region

The Data Cube:

® Encapsulates all data points

e Can be used to aggregate all
facts
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Example: 3-D Data Cube EA) e

A Cube of Cubes:
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Even Smaller Cubes:

e Often the cubes can be
sliced into even smaller
cubes

® By going to the next finer
granularity level in at least
one dimension
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mE/R Model of a Data Cube E A\ s
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e A mE/R model® contains both dimensions and facts.
e \ery good in representing dimensional hierarchies.

’ Year ‘4—4 Quarter ‘4—4 Month H Day
v

Sales

Country ‘4—4 Region H City }7 Price

’ Category ‘<—4 Item

5C. Sapia et al., “Extending the E/R model for the multidimensional paradigm,” in Advances in Database Technologies, ER ‘98 Workshops on Data Warehousing and Data Mining, Mobile Data Access, and
Collaborative Work Support and Spatio-Temporal Data Management, Singapore, November 19-20, 1998, Proceedings, Y. Kambayashi et al., Eds., ser. Lecture Notes in Computer Science, vol. 1552, Springer,
1998, pp. 105-116. DOI: 10.1007/978-3-540-49121-7\_9. [Online]. Available: https://doi.org/10.1007/978-3-540-49121-7%5C_9
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Narrowing the Data Cube Down EA
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e Each data cube can be aggregated.
® |n this process, it is possible to use only individual dimensions for aggregation:
e n-dimensional base cube.
e (Called a base cuboid in data warehousing literature.
¢ Top most 0-dimensional cuboid.

¢ Holds the highest-level of summarization.
e Called the apex cuboid.

e | attice of cuboids. (Forms a data cube)
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Cube: A Lattice of Cuboids
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time,item

all

time,location __time,supplier _item,location

time,item,supplier
time,item,location

time,item,location,supplier

time,location,supplier/.

0-D (apex) cuboid

1-D cuboid
. . . . 2-D cuboid
item,supplier location,supplier
item,location,supplier )
3-D cuboid

4-D (base) cuboid
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Conceptual Modeling of Data Warehouses EAU
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1. Star schema:.
e A fact table in the middle connected to a set of dimension tables.
2. Snowflake schema:.
® A refinement of the star schema where some dimensional hierarchies
are normalized into a set of smaller dimension tables,
forming a shape similar to a snowflake.
e |. e. dimension tables of a star schema are split into multiple (dimension) tables
along their respective granularity level, but not split/normalized for every granularity.
3. Fact constellations:.
* Multiple fact tables sharing dimension tables,
viewed as a collection of stars, therefore called
galaxy schema or fact constellation.
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Example of a Star Schema

Friedrich-Alexander-Universitat
E Technische Fakultat
/e

time

time_key
day

day _of week
month
quarter

year

branch

branch_key
branch_name
branch_type

Sales fact table:

- time_key

item_key
L branch_key
R location_key

9 units_sold
P dollars_sold

/ avg_sales

Measures

item
item_key
item_name
brand

type
supplier_type

location
location_key
street

city
province
country
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Example of Snowflake Schema
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time

time_key
day

day _of week
month
quarter

year

branch

branch_key
branch_name
branch_type

Sales fact table:

- - time_key
item_key

7 branch_key

, location_key
units_sold

dollars_sold
avg_sales

Measures

item

item_key

item_name
brand

type
supplier_key -~

supplier

supplier_key
supplier_type

location

location_key

street

city key-----1

city

city_key
city
province
country
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Example of Fact Constellation
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time

time_key
day

day_of _week
month
quarter

year

branch

branch_key
branch_name
branch_type

Sales fact table:

- time_key
item_key

/ branch_key

location_key
units_sold

dollars_sold
avg_sales

Measures

item

item_key

item_name
brand

type
supplier_type

location

location_key
street

city
province
country

~ = ~Shipping fact table:

time_key
item_key
shipper_key -~
from_location
to_location h
dollars_cost /
units_shipped //

shipper .7

shipper_key
shipper_name
location_key
shipper_type
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Data-Cube Measures E A o

Data-Cube Measure
A data-cube measure is a numeric function that can be evaluated at each point in the data cube space.

Three Categories:
1. Distributive:
o |f the result derived by applying the function to the n aggregate values obtained for n partitions of the
dataset is the same as that derived by applying the function on all the data without partitioning.
E.g. COUNT, SUM, MIN, MAX.
2. Algebraic:
e |f it can be computed by an algebraic function with M arguments, each of which is obtained by applying
a distributive aggregate function.
E.g. AVG, MINy, STD.
3. Holistic:
e |f there is no constant bound on the storage size needed to describe a subaggregate.
E.g. MEDIAN, MODE, RANK.
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Aggregation Type E A\ s

Non-trivial property.

e Next to name and value range.
Defines the set of aggregation operations that can be executed on a measure (a fact).
STOCK: Measure at a specific point in time.

e Aggregated as desired.
e E.g. sales turnover, quantity of an item ordered per day.

FLOW: Measure over a period of time.

e Aggregated as desired, but temporal aggregation not permitted.
e E . g. total stock and total inventory. Yet, summarization of article stock over multiple days makes no
sense!

VPU (Value per Unit): Measures that cannot be summed.
e E.g. unit price, tax rates, exchange rates.

Always applicable: MIN, MAX and AVG.

D. Probst
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Typical OLAP Operations EAN) e

[LI//aa\

Slice and dice: project and select.
e Selecting only certain dimensions/value ranges from a cube
Roll up (drill up): summarize data.
® By climbing up hierarchy or by dimension reduction.
Drill down (roll down): reverse of roll up.
® From higher-level summary to lower-level summary or detailed data, or introducing new dimensions.
Pivot (rotate):
® Reorient the cube, visualization, 3D to series of 2D planes.
Other operations:

e Drill across: involving (across) more than one fact table.
e Drill through: through the bottom level of the cube
to its back-end relational tables (using SQL).

D.Probst | CS6 | KDD5.OLAP $82025
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OLAP Operation: Slice
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4
2026 §§
a1
Q4
2025 %3
:
4
2024
1 A,
4 %
2 O,
2023 g% 7
‘] A(.
%
%@5 %o
O/\

France
Germany
Italy
Spain

Slice
Basic idea:

® Perform a selection on one
dimension of the cube.

Example:
e Select the data for Q2 2025.
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Dice
4 Basic idea:
2026 §3 ® Perform a selection on more
81 than one dimension.
2025 g e |t does not have to be on all
1 dimensions!
4
2024 83 Example:
1 2 e Select the data for Q2 2025
2023 3 2 % and the regions Germany
] A, and Italy.
% %
'5&

France
Germany
Italy
Spain

D.Probst | CS6 | KDD5.OLAP $82025



OLAP Operations: Roll Up and Drill Down
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2025

2024

2023

SRORSNORSOORSNOR

Roll Up

Switch to a
coarser
granularity.

A,
%,
(o)
L

France

Germany

Italy

Spain

Drill Down

%, %, Switch to a finer
A granularity.

2026

2025

2024

2023

France

Germany
Spain

Italy

L

% %&
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OLAP Operations: Pivot
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Data Warehouse Design and Usage



Design of Data Warehouse: A Framework |"EAU Techmische Pt

Four views regarding the design of a data warehouse:
* Top-down view:
* Allows selection of the relevant information necessary for the data warehouse.
e Data-source view:
e Exposes the information being captured, stored, and managed by operational systems.
e Data warehouse view:
e Consists of fact tables and dimension tables.
e Business-query view:
e Sees the perspectives of data in the warehouse from the view of the end-user.

D.Probst | CS6 | KDD5.OLAP $82025
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e Top-down, bottom-up approaches or a combination of both:
® Top-down: starts with overall design and planning (mature).
e Bottom-up: starts with experiments and prototypes (rapid).
* From software-engineering point of view:
e \Waterfall: structured and systematic analysis at each step before proceeding to the next.
e Spiral: rapid generation of increasingly functional systems, short turn-around time.
¢ Typical Data warehouse design process:

1. Choose a business process to model, e.g., orders, invoices, etc.
2. Choose a grain (atomic level of data) of the business process.

3. Choose dimensions that will apply to each fact-table record.

4. Choose a measure that will populate each fact-table record.

DWH Construction is No Easy Feat

Construction of a data warehouse is a difficult long-term task. It is absolutely necessary that its
implementation scope is clearly defined at the beginning. Goals and tasks should be SMART (specific,
measurable, achievable, relevant, and time-related).
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Data Warehouse Development
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Multi-tier data warehouse
/ A
Distributed data marts | _
\\
Data mart Data mart ! Enterprise data warehouse

L4
\

I3
\ A \
\ \
\ R ] \
\ \ U \
\ 4 \

_ | Define a high-level corporate data model
A

1
/
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Data Warehouse and Data Mining



From OLAP To OLAM® B et

Why online analytical mining?
e DW contains integrated, consistent, cleaned data.
® Available information-processing structure surrounding data warehouses.
e ODBC, OLEDB, Web access, service facilities, reporting, and OLAP tools.
e OLAP-based exploratory data analysis.
e Mining with drilling, dicing, pivoting, etc.
¢ Online selection of data-mining functions.
® |ntegration and swapping of multiple mining functions, algorithms, and tasks.

SOLAM = Online Analytical Mining

D.Probst | CS6 | KDD5.OLAP $82025
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Data Warehouse and Data Mining |"EAU Technsche Fatst
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e Data mining algorithms in transformation step: E.g. integrate articles from two systems that have
different article group hierarchy. Goal: Map one article group hierarchy to the existing article group
hierarchy.

* Frequent pattern mining and clustering in reporting: E.g. affinity analysis, revenue prediction, cluster
customers and use this insight for a new marketing campaign.
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Summary E /A

¢ Data warehousing: multi-dimensional model of data.
® A data cube consists of dimensions and measures.
e Star schema, snowflake schema, fact constellations.
e OLAP operations: drilling, rolling, slicing, dicing and pivoting.
e Data warehouse architecture, design, and usage.
e Multi-tiered architecture.
® Business-analysis design framework.
e Information processing, analytical processing, data mining, OLAM (Online Analytical Mining).

D.Probst | CS6 | KDD5.OLAP $82025
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Our appendix in this document covers:
¢ Implementation: efficient computation of data cubes.

e Partial vs. full vs. no materialization.

® |ndexing OLAP data: Bitmap index and join index.
e OLAP query processing.

e OLAP servers: ROLAP, MOLAP, HOLAP.

e Data generalization: attribute-oriented induction.
Additionally, check out these books:

e R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for Extracting,
Cleaning, Conforming, and Delivering Data. Wiley, 2004, 1ISBN: 978-0764567575

e W. H. Inmon, Building the Data Warehouse. Wiley, 2005, 4th edition, ISBN: 978-076459-944-6

¢ |n German: A. Bauer and H. Glinzel, Data Warehouse Systeme — Architektur, Entwicklung,
Anwendung. dpunkt.verlag GmbH, 2004, 4th edition, ISBN: 978-3-89864-785-4
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Any questions about this chapter?

Ask them now or ask them later in our forum:

(9 https://www.studon.fau.de/studon/goto.php?target=1code_OLYeD79h
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Efficient Data-Cube Computation EAN) e
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¢ Data cube can be viewed as a lattice of cuboids.

* The bottom-most cuboid is the base cuboid.

® The top-most cuboid (apex) contains only one cell.

e How many cuboids in an n-dimensional cube with L; levels associated with dimension i?

n

T=]](+1). (1)

i=1

e \aterialization of data cube.
e Materialize each (cuboid) (full materialization),
none (no materialization), or some (partial materialization).
e Selection of cuboids to materialize based on size, sharing, access frequency, etc.

D.Probst | CS6 | KDD5.OLAP $82025
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The "Compute Cube" Operator |E/A\U tinor= it

(V2
e Cube definition and computation in DMQL: 0
DEFINE CUBE sales [item, city, year]:
SUM (sales_in_dollars); / \
COMPUTE CUBE sales;

¢ Transform it into an SQL-like language: (city) (item) (year)
with a new operator CUBE BY (Gray et al. 96).

SELECT item, city, year, SUM (amount) >< ><

FROM sales (city,year) (city,item) (item,year)
CUBE BY item, city, year;
¢ Need to compute the following GROUP BYs: (c\ity,item,ye{r)
(city, item, year),
(city, item), (city, year),
(item, year),
(city), (item), (year)
O
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¢ Index on a particular column.

Each value in the column has a bit vector: bit-op is fast.
Length of bit vector: # of records in base table.

i-th bit set, if i-th row of base table has value of bit vector.
Not suitable for high-cardinality domains:

® A bit compression technique called Word-Aligned Hybrid (WAH) makes it work for high-cardinality
domain as well [Wu et al., TODS’06].

Base table Index on region Index on type
Cust | Region Type RecID | Asia | Europe | America RecID | Retail | Dealer
C1 Asia Retail 1 1 0 0 1 1 0
c2 Europe | Dealer 2 0 1 0 2 0 1
Cc3 Asia Dealer 3 1 0 0 3 0 1
C4 | America | Retail 4 0 0 1 4 1 0
C5 Europe | Dealer 5 0 1 0 5 0 1
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Indexing OLAP Data: Join Indices E A o
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¢ Join index:
JI(R-id, S-id) where R(R-id,...) > S(S-id,...). )

¢ Traditional indices map the values to a list of record ids.
e Materializes relational join in JI-file and speeds it up.
¢ |n data warehouses, join index relates the values of the dimensions
of a star schema to rows in the fact table.
e E.g. fact table: Sales and two dimensions location and item.

* A join index on location maintains for each distinct location a list of R-ids of the tuples recording the sales in
that location.

® Join indices can span multiple dimensions.
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Indexing OLAP data: Join Indices (Example) EAN) e

sales

T57

location item

Main street A— ~Sony-TV

7884
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Efficient Processing of OLAP Queries EAN) e
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¢ Determine which operations should be performed on the available cuboids.
e Transform drill, roll, etc. into corresponding SQL and/or OLAP operations.
E.g. dice = selection + projection.
¢ Determine which materialized cuboid(s) should be selected for OLAP operation.

e | et the query to be processed be on {brand, province_or_state} with the condition "year = 2004",
and there are 4 materialized cuboids available:
1) year, item_name, city.
2) year, brand, country.
3) year, brand, province_or_state.
4) item_name, province_or_state where year = 2004.

e Which should be selected to process the query?
¢ Explore indexing structures and compressed vs. dense-array structures in MOLAP.
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Relational OLAP (ROLAP).
e Use relational or extended-relational DBMS to store
and manage warehouse data and OLAP middleware.
* |nclude optimization of DBMS backend, implementation of aggregation navigation logic, and additional
tools and services.
® Greater scalability.
Multidimensional OLAP (MOLAP).
e Sparse array-based multidimensional storage engine.
e Fast indexing to pre-computed summarized data.
Hybrid OLAP (HOLAP) (e.g., Microsoft SQL-Server).
* Flexibility, e.g., low level: relational, high-level: array.
Specialized SQL servers (e.g., Redbricks).
® Specialized support for SQL queries over star/snowflake schemas.
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Attribute-Oriented Induction



Data Generalization |"EAU Techmische Pt

¢ Summarize data:
* By replacing relatively low-level values
e.g. numerical values for the attribute age
with higher-level concepts
e.g. young, middle-aged and senior.
* By reducing the number of dimensions
e.g. removing birth_date and telephone_number
when summarizing the behavior of a group of students.
e Describe concepts in concise and succinct terms at generalized (rather than low) levels of abstractions:
e Facilitates users in examining the general behavior of the data.
e Makes dimensions of a data cube easier to grasp.
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Attribute-Oriented Induction EAN) e
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* Proposed in 1989 (KDD’89 workshop).

* Not confined to categorical data nor to particular measures.
¢ How is it done?

e Collect the task-relevant data (initial relation) using a relational database query.
® Perform generalization by attribute removal or attribute generalization.
* Apply aggregation by merging identical, generalized tuples and
accumulating their respective counts.
® |nteraction with users for knowledge presentation.
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Attribute-Oriented Induction: An Example |E/A\U

e Example: Describe general characteristics of graduate students in a university database.
e Step 1: Fetch relevant set of data using an SQL statement, e.g.

SELECT name, gender, major, birth_place, birth_date, residence, phone#, gpa
FROM student
WHERE student_status IN "Msc"”, "MBA", "PhD";

e Step 2: Perform attribute-oriented induction.
® Step 3: Present results in generalized-relation, cross-tab, or rule forms.
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Class Characterization () |E/A\U Tecmsthe P et

Name Gender Major Birth Birth date | Residence | Phone GPA
place number
Jim M CS Vancouver, | 08-21-76 3511 Main | 687-4598 3.67
BC, St., Rich-
Canada mond
Scott M CS Montreal, 28-07-75 345 1st | 253-9106 3.70
Lachance Que, Ave., Rich-
Canada mond
Laura Lee F Physics Seattle, 25-08-70 125 Austin | 420-5232 3.83
WA, USA Ave., Burn-
aby
Removed Retained Sci, Eng, | Canada, Age range | City Removed Excl,
Bus Foreign Vg,...
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Class Characterization (ll)

EAU

Friedrich-Alexander-Universitat
Technische Fakultat

Gender Major Birth re- | Agerange | Residence | GPA Count
gion

M Science Canada 20-25 Richmond Very good 16

F Science Foreign 25-30 Burnaby Excellent 22
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Cross-table of birth region and gender:

Canada | Foreign | Total
M 16 14 30
F 10 22 32
Total 26 36 62
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Basic Principles of Attribute-Oriented Induction |"EAU Techmische Pt

Data focusing:

® Task-relevant data, including dimensions.
e The result is the initial relation.

Attribute removal:

® Remove attribute A, if there is a large set of distinct values for A,
but (1) there is no generalization operator on A,
or (2) A’s higher-level concepts are expressed in terms of other attributes.

Attribute generalization:

e |f there is a large set of distinct values for A,
and there exists a set of generalization operators on A,
then select an operator and generalize A.

Attribute-threshold control:
e Typical 2-8, specified/default.
Generalized-relation-threshold control:
e Control the final relation/rule size.
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Attribute-Oriented Induction: Basic Algorithm |E/A\U

InitialRel:
e Query processing of task-relevant data, deriving the initial relation.
PreGen:
® Based on the analysis of the number of distinct values in each attribute, determine generalization plan
for each attribute: removal? Or how high to generalize?
¢ PrimeGen:
e Based on the PreGen plan, perform generalization to the right level to derive a "prime generalized
relation", accumulating the counts.
¢ Presentation:
e User interaction:

1. Adjust levels by drilling.
2. Pivoting.
3. Mapping into rules, cross tabs, visualization presentations.
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Presentation of Generalized Results |E/A\U
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e Generalized relation:

e Relations where some or all attributes are generalized, with counts or other aggregation values
accumulated.

e Cross tabulation:

® Mapping results into cross-tabulation form (similar to contingency tables).
® Visualization techniques: pie charts, bar charts, curves, cubes, and other visual forms.

¢ Quantitative characteristic rules:
® Mapping generalized results into characteristic rules with quantitative information associated with it, e.g.

grad(x) A male(x) = ®)
birth_region(x) = "Canada"[t : 53%]V (4)
birth_region(x) = "foreign"[t : 47%)]. (5)
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Mining-Class Comparisons EAN) e
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e Comparison: Comparing two or more classes.
e Method:

e Partition the set of relevant data into the target class and the contrasting class(es).
® Generalize both classes to the same high-level concepts (i.e. AQI).

¢ Including aggregation.

e Compare tuples with the same high-level concepts.
e Present for each tuple its description and two measures.

e Support — distribution within single class (counts, percentage).
e Comparison — distribution between classes.

® Highlight the tuples with strong discriminant features.
¢ Relevance Analysis:
e Find attributes (features) which best distinguish different classes.
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Attribute-Oriented Induction vs. OLAP |E/A\U
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¢ Similarity:
e Data generalization.
e Presentation of data summarization at multiple levels of abstraction.
e |nteractive drilling, pivoting, slicing and dicing.
¢ Differences:
e OLAP has systematic preprocessing, query independent, and can drill down to rather low level.
® AQOIl has automated desired-level allocation and may perform dimension-relevance analysis/ranking
when there are many relevant dimensions.
® AOIl works on data which are not in relational forms.

D.Probst | CS6 | KDD5.OLAP $82025

55



	Data Warehouse: Basic Concepts
	Data Warehouse Modeling: Data Cube and OLAP
	Data Warehouse Design and Usage
	Data Warehouse and Data Mining
	Summary
	Appendix
	Appendix
	Data Warehouse Implementation
	Attribute-Oriented Induction


