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Basic Concepts



Supervised vs. Unsupervised Learning

Supervised Learning
• The training data (observations,

measurements, etc.) are accompanied by
labels indicating the class of the
observations.

• New data is classified based on a model
created from the training data.

Unsupervised Learning
• Class labels of training data are unknown.

Or rather, there are no training data.

• Given a set of measurements,
observations, etc., the goal is to find
classes or clusters in the data.
→ See next chapter (Lecture/Chapter 8:
Clustering).

D. Probst | CS6 | KDD 7. Classification SS2025 2



Classification vs. Numerical Prediction

• Classification:
• Predicts categorical class labels (discrete, nominal).
• Constructs a model based on the training set and the values (class labels) in a classifying attribute and

uses it in classifying new data.
• Numerical prediction:

• Models continuous-valued functions.
• I.e. predicts missing or unknown (future) values.

• Typical applications of classification:
• Credit/loan approval: Will it be paid back?
• Medical diagnosis: Is a tumor cancerous or benign?
• Fraud detection: Is a transaction fraudulent or not?
• Web-page categorization: Which category is it such as to categorize it by topic.
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Classification – A Two-step Process

1. Model construction: describing a set of predetermined classes:
• Each tuple/sample is assumed to belong to a predefined class, as determined by the class-label

attribute.
• The set of tuples used for model construction is the training set.
• The model is represented as classification rules, decision trees, or mathematical formulae.

2. Model usage, for classifying future or unknown objects:
• Estimate accuracy of the model:

• The known label of test samples is compared with the result from the model.
• Accuracy rate is the percentage of test-set samples that are correctly classified by the model.
• Test set is independent of training set (otherwise overfitting).
• More on evaluation metrics later in section “Model Evaluation and Selection” .

• If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known.
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Classification – 1. Model Construction

Training data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
algorithm

Classification rules

if RANK =’Professor’
or YEARS >6
then TENURED =’yes’
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Classification – 2. Model Usage

Testing data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Classification
rules

Unseen data

(Jeff, Professor, 4)

yes
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Decision Tree Induction



Decision Tree: An Example

• Training dataset:
buys_computer.
The dataset follows an example of
Quinlan’s ID3.

• Resulting tree:

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no
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Decision Tree

Decision Tree Induction
Decision tree induction refers to the learning of a decision-tree based on labeled training data.

Decision Tree
A decision tree is a flowchart-like structure consisting of interconnected internal and leaf nodes.

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair

Components of a Decision Tree
• Root: topmost node.
• Internal node: test on an attribute.
• Leaf node: holds a class label, also called terminal

node.
• Branch: outcome of a leaf node’s test coupled with

a text. In this example: excellent.
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Algorithm for Decision Tree Induction (I)

Construction in general follows a greedy algorithm, i. e. non-backtracking.
Thus, it is done in a top-down recursive in a divide-and-conquer manner.

Input: data partition D, attribute_list, attribute_selection_method.

Algorithm Sketch build_decision_tree:
1. Create node N.

2. Determine splitting attribute A according to the splitting criterion obtained by applying
attribute_selection_method. May also return a split point or splitting subset.

3. Label N with splitting criterion.

4. If splitting attribute is discrete-valued and multiway split is allowed, or attribute has only
one unique value: Remove attribute from attribute_list.

5. For each outcome of splitting criterion:

• Partition D according to outcome of splitting criterion.
• Grow branches (subtrees, call build_decision_tree) on N for each partition.

6. Return node N

Attribute Types:
Discrete:

A?

a1 av. . .

Discrete & Binary Tree:

A ∈ SA?
yes no

Continuous:

A?
≤split_point >split_point
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Algorithm for Decision Tree Induction (II)

Stopping criteria:
• All samples in D belong to the same class. N becomes a leaf.
• attribute_list is empty. If multiple classes: use majority class.
• Partition D is empty, thus create leaf with majority class.

Decision Tree Algorithm

We merely discussed the gist to build a decision tree. A detailed algorithm to construct a decision tree is
covered in the appendix under section “Basic Decision Tree Algorithm” , as well as in our reference book1.

1J. Han et al., Data Mining: Concepts and Techniques, 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011, ISBN: 0123814790, pp. 332 – 335.
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Attribute Selection Methods

Attribute Selection Methods
An attribute selection method is a heuristic to determine the “best” splitting criterion to partition data.

• Also known as splitting rules.
• Provides ranking for each attribute.
• Partition data based on attribute with best score. Best score depends on method used (some seek

to minimize whereas others maximize).
• Tree node is labeled with splitting criterion (attribute). Sub tree results from partitions of splitting

criterion.

Popular methods include:

1. Information Gain

2. Gain Ratio

3. Gini Index
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Information Gain (ID3) (I)

• Select the attribute with the highest information gain.
• Partitions reflect least randomness, i. e. impurity.
• Expected information (entropy) needed to classify a tuple in D:

Info(D) = −
m∑

i=1

pi log2(pi)

• pi is the probability that tuple in D belongs to class Ci ,

estimated by |Ci |
|D| , such that 1 ≤ i ≤ m.

• log2 because information is encoded in bits.
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Information Gain (ID3) (II)

Calculate information for every attribute in attribute_list and data partition D:

Discrete-valued Attribute
• Attribute A with v distinct values.
• Expected information required to classify tuple

in D based on partitioning by A.
• DA: dataset D partitioned by A, v : number of

distinct values of A.

InfoA(D) =
v∑

j=1

|DA,j |
|DA|

Info(DA,j)

Continuous-valued Attribute
• Attribute A with v distinct values.
• Order values in increasing order.
• Calculate midpoint of every neighbouring value

ai+ai+1

2 . Results in v − 1 possible split points.

• Evaluate InfoA(D) for every possible splitting.
• Binary split: A ≤split_point and

A >split_point

Given Info(D) and InfoA(D), Information Gain is defined as:

Gain(A) = Info(D)− InfoA(D)
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Information Gain (ID3) - Example (I)

• Class P: buys_computer = "yes"
• Class N: buys_computer = "no"

Info(D) = I(9, 5) = − 9
14 log2(

9
14)−

5
14 log2(

5
14) = 0.94

age p n l(p, n)
≤ 30 2 3 0.971
31 . . . 40 4 0 0
> 40 3 2 0.971

• Similarly,
• Gain(income) = 0.029,
• Gain(student) = 0.151,
• Gain(credit_rating) = 0.048.

Infoage(D) =
5

14 I(2, 3) + 4
14 I(4, 0) + 5

14 I(3, 2) = 0.694.

5
14 I(2, 3) means "age ≤ 30" has 5 out of 14
samples, with 2 yes’es and 3 no’s. Hence,

Gain(age) = Info(D)− Infoage(D) = 0.246.

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no
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Information Gain (ID3) - Example (II)

age?
≤30 >40

income student credit_rating buys_computer
high no fair no
high no excellent no
medium no fair no
low yes fair yes
medium yes excellent yes

income student credit_rating buys_computer
high no fair yes
low yes excellent yes
medium no excellent yes
high yes fair yes

31. . . 40

income student credit_rating buys_computer
medium no fair yes
low yes fair yes
low yes excellent no
medium yes fair yes
medium no excellent no
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Gain Ratio (C4.5)

• Extension to Information Gain as this method is biased towards attributes with large amount of
values.

• C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to
information gain):

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D|

log2

(
|Dj |
|D|

)
,

GainRatio(A) =
Gain(A)

SplitInfoA(D)
.

• The attribute with the maximum gain ratio is selected as the splitting attribute.
• Disadvantage: Becomes unstable as SplitInfoA(D) approaches zero. Overcome by using

Information Gain then.
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Gini Index (CART, IBM IntelligentMiner) (I)

• Corrado Gini (1884 – 1965).
• Italian statistician and sociologist.

• Also called Gini coefficient.
• Measures statistical dispersion.

• Zero expresses perfect equality where all values belong to the same class.
• One expresses maximal inequality among values.

• Based on the Lorenz curve.
• Plots the proportion of the total sum of values (y -axis) that is cumulatively assigned to the bottom x% of

the population.
• Line at 45 degrees thus represents perfect equality of value distribution.

• Gini coefficient then is . . .
• . . . the ratio of the area that lies between the line of equality and the Lorenz curve over the total area

under the line of equality.
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Gini Index (CART, IBM IntelligentMiner) (II)

Example: Distribution of incomes.
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Gini Index (CART, IBM IntelligentMiner) (III)

• Measured impurity of partition D is defined as the sum over n classes:

Gini(D) = 1−
n∑

j=1

p2
j ,

where pj is the non-zero probability that sample in D belongs to class Cj as estimated by |Cj,D |
|D|

• If attribute A is discrete-valued with v distinct values compute all possible subsets of values
2v − 2. Compute weighted sum of each partition tuple (D1 and D2) as follows:

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2).

• If attribute A is continuous-valued proceed similarly as in calculating Information Gain for
continuous-valued attributes (order values, calculate midpoint of value pairs) and then calculate
GiniA(D) for every split point.
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Gini Index (CART, IBM IntelligentMiner) (IV)

• Gini Index as the reduction in impurity is then given as follows:

∆GiniA(D) = Gini(D)− GiniA(D).

• Attribute with minimum Gini Index is used as the splitting attribute.
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Gini Index - Example (I)

• D has 9 tuples in buys_computer = "yes" and 5 in "no", thus

Gini(D) = 1−
(

9

14

)2

−
( 5

14

)2

= 0.459.

• Suppose the attribute income partitions D
into 10 in D1 : {low,medium} and 4 in D2 : {high}:

Gini(D|D[income]=”medium”,”low”)

=
10

14
Gini(D1) +

4

14
Gini(D2)

=
10

14

(
1−

( 7

10

)2

−
(

3

10

)2
)

+
4

14

(
1−

(
2

4

)2

−
(

2

4

)2
)

=

= 0.443 = gini(D|D[income]=”high”).
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Gini Index - Example (II)

• Gini(D|D[income]=”low”,”high”) = 0.458,
Gini(D|D[income]=”medium”,”high”) = 0.450.

• Thus, split on the {"low","medium"} and {"high"}, since it has the lowest gini index.
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Attribute Selection Methods Overview

The three methods, in general, return good results, but
• Information gain:

• Biased towards multi-valued attributes.
• Gain ratio:

• Tends to prefer unbalanced splits in which one partition is much smaller than the others.
• Gini index:

• Biased to multi-valued attributes.
• Has difficulty when number of classes is large.
• Tends to favor tests that result in equal-sized partitions and purity in both partitions.
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Other Attribute Selection Methods

• CHAID:
• A popular decision tree algorithm, measure based on χ2 test for independence.

• C-SEP:
• Performs better than Information Gain and Gini Index in certain cases.

• G-statistic:
• Has a close approximation to χ2 distribution.

• MDL (Minimal Description Length) principle:
• I.e. the simplest solution is preferred.
• The best tree is the one that requires the fewest number of bits to both (1) encode the tree and (2)

encode the exceptions to the tree.
• Multivariate splits:

• Partitioning based on multiple variable combinations.
• CART: finds multivariate splits based on a linear combination of attributes.

• Which Attribute Selection Method is the best?
• Most give good results, none is significantly superior to others.
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Overfitting and Tree Pruning

• Overfitting: An induced tree may overfit the training data.
• Too many branches, some may reflect anomalies due to noise or outliers.
• Poor accuracy for unseen samples.

• Pruned trees are typically smaller, less complex, easier to comprehend, faster and better at
classifying unseen data.

• Two approaches to avoid overfitting:
1. Prepruning:

• Halt tree construction early.
Do not split a node, if this would result in the goodness measure falling below a threshold.

• Difficult to choose an appropriate threshold.

2. Postpruning:
• Remove branches from a "fully grown" tree.

Get a sequence of progressively pruned trees.
• Use a set of data different from the training data to decide which is the "best pruned tree."
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Enhancements to Basic Decision Tree Induction

• Allow for continuous-valued attributes.
• Dynamically define new discrete-valued attributes that partition the values of continuous-valued

attributes into a discrete set of intervals.
• Handle missing attribute values.

• Assign the most common value of the attribute.
• Assign probability to each of the possible values.

• Attribute construction.
• Create new attributes based on existing ones that are sparsely represented.
• This reduces fragmentation, repetition, and replication.
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Classification in Large Databases

• ID3, C4.5, and CART have been developed with the assumption that data fits into memory.
With Big Data that’s not possible anymore.

• Scalability:
• Classifying datasets with millions of examples and

hundreds of attributes with reasonable speed.
• Why is decision tree induction popular?

• Relatively fast learning speed (compared to other classification methods).
• Convertible to simple and easy-to-understand classification rules.
• Can use SQL queries for accessing databases.
• Classification accuracy comparable with other methods.

• Two scalable methods, among others:
1. RainForest
2. BOAT
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Scalable Decision Tree: RainForest

• Applicable to any decision tree algorithm.
• Separates the scalability aspects from the criteria that determine the quality of the tree.
• Builds an AVC-list: (Attribute, Value, Class_label).
• AVC-set (of an attribute X):

• Projection of training dataset onto the attribute X and class label where counts of individual class label
are aggregated.

• AVC-group (of a node n):
• Set of AVC-sets of all predictor attributes at the node n.
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RainForest: Training Set and its AVC-sets

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on age:
age yes no
≤ 30 2 3

31 . . . 40 4 0
> 40 3 2

AVC-set on income:
income yes no

high 2 2
medium 4 2

low 3 1
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RainForest: Training Set and its AVC-sets (II)

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

AVC-set on student:
student yes no

yes 6 1
no 3 4

AVC-set on credit_rating:
credit_rating yes no

fair 6 2
excellent 3 3
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Scalable Decision Tree: BOAT

• BOAT = Bootstrapped Optimistic Algorithm for Tree Construction
• Use a statistical technique called bootstrapping to create several smaller samples (subsets),

each fitting in memory.
• See on the subsequent slides.

• Each subset is used to create a tree, resulting in several trees.
• These trees are examined and used to construct a new tree T’.

• It turns out that T’ is very close to the tree that would be generated
using the whole data set together.

• Advantages:
• Requires only two scans of DB.
• An incremental algorithm:

• Take insertions and deletions of training data and update the decision tree.
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Presentation of Classification Results

D. Probst | CS6 | KDD 7. Classification SS2025 32



Visualization of a Decision Tree
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Interactive Visual Mining
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Rule-Based Classification



Using IF-THEN Rules for Classification

• Represent the knowledge in the form of IF-THEN rules.
• E.g., if age≤ 30 AND student = "yes" THEN buys_computer = "yes".
• Readable.

• Rule antecedent/precondition vs. rule consequent.
• Assessment of a rule R: coverage and accuracy.

• ncovers = # of tuples covered by R (antecedent if true).
• ncorrect = # of tuples correctly classified by R.
• coverage(R) = ncovers

|D| with D training data set.
• accuracy(R) = ncorrect

ncovers
.
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Potential Problems of Rule-Based Classification

1. More than one rule is triggered.
2. No rule is triggered.
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Potential Solutions

1. More than one rule is triggered: conflict resolution.
• Size ordering:

• Assign the highest priority to the triggered rule that has the "toughest" requirement
(i.e., rule with most used attribute in condition).

• Class-based ordering:
• Decreasing order of prevalence or misclassification cost per class.
• No order of rules within class → disjunction (logical OR) between rules.

• Rule-based ordering (decision list):
• Rules are organized into one long priority list,

according to some measure of rule quality, or by experts.
• Rules must be applied in this particular order to avoid conflict.

2. No rule is triggered.
• Use a fallback/default rule.
• Always evaluated as the last rule, if and only if other rules are not covered by some tuple, i. e. no rules

have been triggered.
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Rule Extraction from a Decision Tree

• Rules are easier to understand than large trees.
• Rule can be created for each path from the root to a leaf.

• The leaf holds the class prediction.

• Each attribute-value pair along the path forms a conjunction:

Example:

1. IF age≤ 30 AND student = "no"
THEN buys_computer = "no".

2. IF age≤ 30 AND student = "yes"
THEN buys_computer = "yes".

3. IF age== 31 . . . 40 THEN buys_computer = "yes".

4. . . .

age?

yes

student?

noyes

credit rating?

no yes

31. . . 40

≤30 >40

noyes excellent fair
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Rule Induction: Sequential Covering Method

• Sequential covering algorithm:
• Extracts rules directly from training data.

• Typical sequential covering algorithms:
• FOIL, AQ, CN2, RIPPER.

• Rules are learned sequentially.
• Each rule for a given class Ci will cover many tuples of Ci , but none (or few) of the tuples of other

classes.
• Algorithm sketch:

• Rules are learned one at a time.
• Each time a rule is learned, the tuples covered by the rule are removed.
• The process repeats on the remaining tuples unless termination condition, e.g., when no more training

examples left or when the quality of a rule returned is below a user-specified threshold.
• Compare with decision-tree induction:

• That was learning a set of rules simultaneously.
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Sequential Covering Algorithm (I)

Data:
• Training dataset D containing tuples with their associated class labels;
• attribute_values, the set of all attributes and their possible values;

Result: A rule set.

1 rule_set← {} ; // Initial set of rules learned is empty

2 foreach class c of D do
3 repeat
4 rule← learn_one_rule(D, attribute_values, c);
5 remove tuples covered by rule from D;

6 rule_set← rule_set + rule ; // add new rule to rule set

7 until terminating condition;

8 return rule_set;
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Sequential Covering Algorithm (II)

• Rules are learned in a general-to-specific manner
• Start with the most general rule possible: a rule with an empty condition

IF THEN buys_computer = "yes"
• Then: Consider each possible attribute (attribute_values)

For instance: attribute-value pair (att, val); consider the following attribute tests:
att = val, att< val, att≤ val, att > val, att≥ val

• Curse of dimensionality: testing each attribute-value pair is computationally explosive
• Solution: greedy depth-first strategy of learn_one_rule

• Add new attribute test that improves the rule quality the most.
• Each time a new attribute test is added, the rule should cover more "accept" tuples (buys_computer =

"yes").
• Repeat until a certain acceptable quality level is reached (terminating condition).

• What if we added a poor choice? Greedy search does not allow for backtracking.
• Retain the best k attribute candidates at each step, rather than a single best candidate.
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Sequential Covering Algorithm (III)
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Sequential Covering Algorithm (IV)

• learn_one_rule requires a measure of rule quality.
• Accuracy and coverage seems obvious choices on their own, but individually not enough.
• FOIL (First-Order Inductive Learner): based on information gain

• Suppose we have two rules:

R : IF condition THEN class = c

R′ : IF condition’ THEN class = c

• pos/neg are # of positive/negative tuples covered by R, pos′/neg′ respectively for R′.
• FOIL assesses the information gained by extending condition’ as

FOIL_Gain = pos′
(
log2

pos′

pos′ + neg′
− log2

pos

pos + neg

)
.

• FOIL favors rules that have high accuracy and cover many positive tuples.
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Rule Pruning

• Danger of overfitting.
• Removing a conjunct (attribute test),

• if pruned version of rule has greater quality,
assessed on an independent set of test tuples (called "pruning set").

• FOIL uses:

FOIL_Prune(R) =
pos− neg

pos + neg
.

• If FOIL_Prune is higher for the pruned version of R, prune R.
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Bayes Classification Methods



Bayesian Classification: Why?

• A statistical classifier:
• Performs probabilistic prediction, i.e. predicts class-membership probabilities.

• Foundation: Bayes’ Theorem.
• Performance:

• A simple Bayesian classifier (naïve Bayesian classifier) has performance comparable with decision tree
and selected neural-network classifiers.

• Incremental:
• Each training example can incrementally increase/decrease the probability that a hypothesis is correct –

prior knowledge can be combined with observed data.
• Standard:

• Even when Bayesian methods are computationally intractable, they can provide a standard of optimal
decision making against which other methods can be measured.
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Bayes’ Theorem: Basics (I)

• Let X be a data sample ("evidence").
• The class label shall be unknown.

• Let Ci be the hypothesis that X belongs to class i .
• Classification is to determine P(Ci |X):

• Posteriori probability: the probability that the hypothesis
holds given the observed data sample X .

• P(Ci):
• Prior probability: the initial probability.
• E.g., X will buy computer, regardless of age, income, . . .

• P(X):
• Probability that sample data is observed.

• P(X |Cj):
• Likelihood: the probability of observing the sample X given that the hypothesis holds.
• E.g., given that X buys computer, the probability that X is 31 . . . 40, medium income.
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Bayes’ Theorem: Basics (II)

• Given training data X , the posteriori probability P(Ci |X)
of a hypothesis Ci follows from the Bayes’ Theorem:

P(Ci |X) =
P(X |Ci)P(Ci)

P(X)
.

• Predicts that X belongs to Ci if the probability P(Ci |X)
is the highest among all the P(Ck |X) for all k classes.

• Practical difficulty:
• Requires initial knowledge of many probabilities.
• Significant computational cost.
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Towards Naïve Bayesian Classifier

• Let D be a training set of tuples and their associated class labels.
• Each tuple is represented by an n-dimensional attribute X = (x1, x2, . . . , xn).

• Suppose there are m classes C1,C2, . . . ,Cm.
• Classification is to derive the maximum posteriori probability.

• i.e. the maximal P(Ci |X).
• This can be derived from Bayes’ Theorem:

P(Ci |X) =
P(X |Ci)P(Ci)

P(X)
.

• Since P(X) is constant for all classes, we must maximize only:

P(X |Ci)P(Ci).
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Derivation of Naïve Bayes Classifier

• A simplifying assumption: attributes are conditionally independent.
• I.e. no dependence relation between attributes (which is "naïve").

P(X |Ci) =
∏n

k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• This greatly reduces the computation cost:
Only count the class distribution.

• If Ak is categorical,
• P(xk |Ci)is the number of tuples in Ci having value xk for Ak

divided by |Ci,D| (the number of tuples of Ci in D).
• If Ak is continuous-valued,

• P(xk |Ci) is usually computed based on Gaussian distribution with a mean µ and standard deviation σ:

G(x, µ, σ) = 1√
2πσ

e− (x−µ)2

2σ2 ,

• and P(xk |Ci) = G(xk , µCi , σCi ).
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Naïve Bayesian Dataset

• Classes:
• C1: buys_computer = "yes".
• C2: buys_computer = "no".

• Data sample:
• X = (age ≤ 30,

income = ”medium”,
student = ”yes”,
credit_rating = ”fair”).

age income student credit_rating buys_computer
≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no
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Naïve Bayesian Classifier: An Example

• Prior probability P(Ci):
• P(buys_computer = ”yes”) = 9

14 = 0.643.
• P(buys_computer = ”no”) = 5

14 = 0.357.

• New tuple X = (age ≤ 30, income = ”medium”, student = ”yes”, credit_rating = ”fair”).
• Compute likelihood P(X |Ci) for each class:

• P(age ≤ 30|buys_computer = ”yes”) = 2
9 = 0.222.

• P(age ≤ 30|buys_computer = ”no”) = 3
5 = 0.6.

• P(income = ”medium”|buys_computer = ”yes”) = 4
9 = 0.444.

• P(income = ”medium”|buys_computer = ”no”) = 2
5 = 0.4.

• P(student = ”yes”|buys_computer = ”yes”) = 5
9 = 0.556.

• P(student = ”yes”|buys_computer = ”no”) = 1
5 = 0.2.

• P(credit_rating = ”fair”|buys_computer = ”yes”) = 6
9 = 0.667.

• P(credit_rating = ”fair”|buys_computer = ”no”) = 2
5 = 0.4.
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Naïve Bayesian Classifier: An Example (II)

• Compute likelihood P(X |Ci) for this new tuple X :
• Recall: P(X |Ci) =

∏n
k=1 P(xk |Ci) = P(x1|Ci)P(x2|Ci) · · · P(xn|Ci).

• P(X |buys_computer = ”yes”) = 0.222 · 0.444 · 0.556 · 0.667 = 0.037.
• P(X |buys_computer = ”no”) = 0.6 · 0.4 · 0.2 · 0.4 = 0.019.

• Compute P(X |Ci) · P(Ci) for each class outcome:
• P(X |buys_computer = ”yes”) · P(buys_computer = ”yes”) = 0.024.
• P(X |buys_computer = ”no”) · P(buys_computer = ”no”) = 0.007.

• Therefore, X belongs to class C1 (buys_computer = "yes") with probability of 2.4%.
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Avoiding the Zero-Probability Problem

• Naïve Bayesian prediction requires each conditional probability to be non-zero.
• Otherwise, the predicted probability will be zero.

P(X |Ci) =
∏n

k=1 P(xk |Ci).

• Example:
• Suppose a dataset with 1000 tuples, income = "low" (0), income = "medium" (990), and income =

"high" (10).
• Use Laplacian correction (or Laplacian estimator):

• Add 1 to each case:
• P(income = ”low”) = 1

1003 .
• P(income = ”medium”) = 991

1003 .
• P(income = ”high”) = 11

1003 .
• Additionally, add 1 to each other attribute and value combination as well!
• The "corrected" probability estimates are close to their "uncorrected" counterparts.
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Naïve Bayesian Classifier: Comments

Advantages
• Easy to implement.
• Good results obtained in most of the cases.

Disadvantages
• Assumption: class conditional independence, therefore loss of accuracy.
• Practically, dependencies exist among variables.

• E.g., hospital patients:
• Profile: age, family history, etc.
• Symptoms: fever, cough, etc.
• Disease: lung cancer, diabetes, etc.

• Cannot be modeled by naïve Bayesian classifier.

How to deal with these dependencies?→ Bayesian belief networks (see textbook).
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Model Evaluation and Selection

• Evaluation metrics:
• How can we measure accuracy?
• Other metrics to consider?

• Use test set of class-labeled tuples instead of training set when assessing accuracy.
• Methods for estimating a classifier’s accuracy:

• Holdout method, random subsampling.
• Cross-validation.
• Bootstrap.

• Comparing classifiers:
• Confidence intervals.
• Cost-benefit analysis and ROC curves.
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Confusion Matrix and Evaluation Metrics (I)

Given M classes, an entry C
(m)
ij in an M × M confusion matrix indicates the number of tuples in class i

that were labeled by the classifier as class j .

Predicted Class
C1 ¬C1 Total

True Class
C1 TP FN P
¬C1 FP TN N
Total P’ N’ P + N

• True Positives (TP) = correctly classified tuples.

• True Negatives (TN) = correctly classified tuples.

• False Positives (FP) = negative tuples incorrectly
classified as positive.

• False Negatives (FN) = positive tuples incorrectly
classified as negative.

Accuracy:

• Percentage of correctly classified tuples.
• Also known as the (overall) recognition rate.
• Most effective with a balanced dataset.
• Inverse: Error rate as the misclassification rate.

Accuracy =
TP + TN

P + N
Error Rate = 1− Accuracy

=
FP + FN

P + N
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Confusion Matrix and Evaluation Metrics (II)

Predicted Class
C1 ¬C1 Total

True Class
C1 TP FN P
¬C1 FP TN N
Total P’ N’ P + N

• True Positives (TP) = correctly classified tuples.

• True Negatives (TN) = correctly classified tuples.

• False Positives (FP) = negative tuples incorrectly
classified as positive.

• False Negatives (FN) = positive tuples incorrectly
classified as negative.

• Sensitivity = True positive rate.
• Specificity = True negative rate.
• Precision = Measure of exactness.
• Recall = Measure of completeness.

Perfect score is 1.0.
Inverse relationship with precision.

Sensitivity =
TP

P
=

TP

TP + FN
= Recall

Specificity =
TN

N

Precision =
TP

TP + FP
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Confusion Matrix and Evaluation Metrics (III)

F-Measure: Combines precision and recall in one single measure.

F1 Measure

F1 =
2× Precision× Recall

Precision + Recall

• Harmonic mean between precision and recall.
• Equal weight to both measures.

Fβ Measure

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall

• Weighted measure.
• Gives β-times more weight to precision.
• β > 1: More weight on precision. E.g.

important to minimize false positives.
• β < 1: More weight on recall. E.g. important

to minimize false negatives.
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Evaluation Metrics - Example

Actual class/predicted class cancer = yes cancer = no Total Recognition (%)
cancer = yes 90 210 300 30.00 (sensitivity)
cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

• Precision = 90
230 = 39.13%.

• Recall = 90
300 = 30.00%.

• F1-measure = 2·0.3913·0.3
0.3913+0.3 = 33.96%.
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Evaluation Strategies: Holdout Method

Holdout method.
• Randomly assign tuples into two independent sets:

• Training set (E.g., 2/3) for model construction.
• Test set (E.g., 1/3) for accuracy estimation.

• Random sampling: a variation of holdout that repeats holdout k times.
• Create an average accuracy over all experiments.
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Evaluation Strategies: Cross Validation

Most common: k -fold cross validation (k = 10 is popular).

• Randomly partition the data into k mutually
exclusive subsets (folds), each approximately
equal size.

• At i-th iteration, use Di as test set and the
others as training set.

• Average accuracy of all iterations.
• Leave-one-out: k folds, on i-th iteration leave

out i-th fold; for small-sized data.
• Stratified cross-validation: For every class

select a simple random sample of tuples.
Results in subsets with approximately the same
distribution.

Example: k -fold cross validation with k = 5

← Total Number of Tuples−→
Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Training Validation
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Evaluation Strategy: Bootstrap

Bootstrap samples training data uniformly with replacement.
Several bootstrap methods exists, yet a common one is .632 bootstrap.

• Data set with d tuples is sampled d times - uniformly with replacement.
• Uniformly = every tuple has the same probability ( 1

d ) for selection.
• With replacement = High change a tuple is selected more than once.
• Not selected tuples will form the test set.
• Probability of not being chosen is 1− 1

d . Selecting d times: (1− 1
d )

d .
With a large data set it approaches e−1 = 0.368.

• Thus, on average 63.2% of tuples are selected as the training set.
• Sampling procedure is repeated k times.

Calculate accuracy in every iteration as follows:

Acc(M) =
1

k

k∑
i=1

0.632 · Acc(Mi)test_set + 0.368 · Acc(Mi)train_set.
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Evaluating Classifier Accuracy: Bootstrap (II)

• Suppose we have 2 classifiers, M1 and M2, which one is better?
• Use 10-fold cross-validation to obtain err(M1) and err(M2).

• Recall: error rate is 1− accuracy(M).
• Mean error rates:

• Just estimates of error on the true population of future data cases.
• What if the difference between the 2 error rates is just attributed to chance?

• Use a test of statistical significance.
• Obtain confidence limits for our error estimates.
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Evaluating Classifier Accuracy: Null Hypothesis

• Perform k -fold cross-validation with k = 10.
• Assume samples follow a t-distribution with k − 1 degrees of freedom.
• Use t-test

• Student’s t-test.
• Null hypothesis:

• M1 and M2 are the same.
• If we can reject the null hypothesis, then

• Conclude that difference between M1 and M2 is statistically significant.
• Obtain confidence limits for our error estimates.
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Estimating Confidence Intervals (I)

• If only one test set available: pairwise comparison:
• For i-th round of 10-fold cross-validation, the same cross partitioning is used to obtain err(M1)i and

err(M2)i .
• Average over 10 rounds to get err(M1) and err(M2).
• t-test computes t-statistic with k − 1 degrees of freedom:

t = err(M1)−err(M2)
var(M1−M2)√

k

,

• where

var(M1 − M2) =
1
k

∑k
i=1 [err(M1)i − err(M2)i − (err(M1)− err(M2))]

2
.

• If two test sets available: use unpaired t-test:

var(M1 − M2) =
√

var(M1)
k1

+ var(M2)
k2

,

where k1 & k2 are # of cross-validation samples used for M1 & M2, respectively.
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Estimating Confidence Intervals (II)

• Symmetrical.
• Significance level:

• E.g., sig = 0.05 or 5% means M1 & M2 are
significantly different for 95% of population.

• Confidence limit: z = sig
2 .
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Estimating Confidence Intervals (III)

Are M1 and M2 significantly different?
• Compute t . Select significance level (E.g., sig = 5%).
• Consult table for t-distribution:

• t-distribution is symmetrical:
• Typically upper % points of distribution shown.

• Find critical value c corresponding to k − 1 degrees of freedom (here, 9)
• and for confidence limit z = sig

2 (here, 0.025).
• =⇒ Here, critical value c = 2.262

• If t > c or t < −c, then t value lies in rejection region:
• Reject null hypothesis that mean error rates of M1 and M2 are equal.
• Conclude: statistically significant difference between M1 and M2.

• Otherwise, conclude that any difference is chance.
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Receiver Operating Characteristics (ROC) Curve

• Visual comparison of classification models.
• Compares and shows trade-off between TPR and FPR:

• True Positive Rate (TPR): Proportion of positive tuples
correctly classified as positive.
→ sensitivity or recall = TP

P
• False Positive Rate (FPR:) Proportion of negative tuples

incorrectly classified as positive.
→ FPR = FP

N = 1− Specificity

• The area under the ROC curve is a measure of the
accuracy of the model. Maximum area of 1.0 for a
perfect classifier.

• The closer to the diagonal line (i.e. the closer the area
is to 0.5), the less accurate is the model.

How to draw: Order tuples in decreasing order of
probability.

• If TP move up TPR and plot point.

• If negative tuple classified as positive: move both
FPR and FPR.
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Other Aspects of Model Selection

• Speed
• Computational cost to train a classifier.
• Time to use model (prediction time).

• Robustness, i. e. the ability to make accurate predictions.
• Noisy data.
• Missing values.

• Scalability, i . e. efficient construction of classifiers on an abundant amount of training tuples.
• Interpretability, refers to understanding and insight

• Typically subjective and difficult to access.
• Decision trees and classification rules are easy to interpret, but interpretability degrades with the size.

• Other measures such as goodness of rules, decision-tree size or compactness of classification rules.
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Ensemble Methods

Ensemble Method
An ensemble method creates a composite model that consists of several models such as to form one
model.

• Most of the time weak learners are combined to mitigate their respective individual shortcomings.
• Data set is partitioned into k training sets.
• Train a classifier on each training set.
• Every individual classifier returns its prediction.
• Overall prediction is determined for instance by majority voting.
• Prediction typically more accurate than each individual model.
→ Returns better results when diversity among models is great.

• Each classifier should perform better than random guessing.
• Popular methods include Bagging, Boosting, and Random Forests.
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Bagging: Bootstrap Aggregation

• Analogy:
• Diagnosis based on multiple doctors’ majority vote.

• Training:
• Given a set D of d tuples, at each iteration i , a training set Di of d tuples is sampled with replacement

from D (i.e., bootstrap).
• A classifier model Mi is learned for each training set Di .

• Prediction in the case of classification: classify an unknown sample X .
• Each classifier Mi returns its class prediction.
• The bagged classifier M∗ counts the votes and assigns the class with the most votes to X .

• Prediction of a real number (i. e. regression or time series forecast):
• Can be applied to the prediction of continuous values by taking the average value of each prediction for

a given test tuple.
• Accuracy:

• Often significantly better than a single classifier derived from D.
• For noisy data: not considerably worse, more robust.
• Proved improved accuracy in prediction.
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Boosting

• Analogy:
• Consult several doctors, based on a combination of weighted diagnoses – weight assigned based on the

previous diagnosis accuracy
• How boosting works:

• Weights are assigned to each training tuple.
• A series of k classifiers is iteratively learned.
• After a classifier Mi is learned, the weights are updated to allow the subsequent classifier, Mi+1 to pay

more attention to the training tuples that were misclassified by Mi .
• The final M∗ combines the votes of each individual classifier, where the weight of each classifier’s vote

is a function of its accuracy.
• Classification:

• Each classifier Mi returns its class prediction.
• The bagged classifier M∗ counts the votes and assigns the class with the most votes to X .

• Boosting algorithm can be extended for numeric prediction.
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AdaBoost ("Adaptive Boosting"2): Training

• Given a data set D of d class-labeled tuples: (x1, y1), . . . , (xd , yd) with yd ∈ Y = {1, . . . , c}.
• Initialize empty lists to hold information per classifier: w,β,M← empty list.
• Initialize weights for first classifier to hold same probability for each tuple: w1

j ← 1
d

• Generate K classifiers in K iterations. At iteration k ,

1. Calculate “normalized” weights: pk = wk∑d
j=1 w i

j

2. Sample dataset with replacement according to pk to form training set Dk .
3. Derive classification model Mk from Dk .
4. Calculate error εk by using Dk as a test set as follows: εk =

∑d
j=1 pk

j · err(Mk , xj , yj),
where the misclassification error err(Mk , xj , yj) returns 1 if Mk(xj) ̸= yj , otherwise it returns 0.

5. If error(Mk) > 0.5: Abandon this classifier and go back to step 1.
6. Calculate βk = εk

1−εk
.

7. Update weights for the next iteration: wk+1
j = wk

j β
1−err(Mk ,xj ,yj)
k . If a tuple is misclassified, its weight

remains the same, otherwise it is decreased. Misclassified tuple weights are increased relatively.
8. Add wk+1, Mk , and βk to their respective lists.
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AdaBoost ("Adaptive Boosting"4): Prediction

• Initialize weight of each class to zero.
• For each classifier i in k classifiers:

1. Calculate the weight of this classifier’s vote: wi = log( 1
βi
).

2. Get class prediction c for (single) tuple x from current weak classifier Mi : c = Mi(x).
3. Add wi to weight for class c.

• Return predicted class with the largest weight.
• Mathematically, this can be formulated as:

M(x) = argmaxy∈Y
∑k

i=1(log
1
βi
)Mi(x)

3Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. DOI: 10.1006/jcss.1997.1504.
[Online]. Available: https://doi.org/10.1006/jcss.1997.1504, Algorithm AdaBoost.M1 on p. 131.
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Random Forest6

• Ensemble method consisting only of decision trees where each tree has been generated using
random selection of attributes at each node.

• Classification: Each tree votes and the most popular class is returned.
• Two methods to construct random forests: (each builds k trees)

1. Forest-RI (random input selection):
• Random sampling with replacement to obtain training data from D.
• Set F as the number of attributes to determine split at each node. F is smaller than the number of available

attributes.
• Construct decision tree Mi by randomly select candidates at each node. Use CART to grow tree to maximum

size without pruning.
2. Forest-RC: Similar to Forest-RI but new attributes (features) are generated by linear combinations of

existing attributes to reduce correlation between individual classifiers. At each node, attributes are
randomly selected.

• Comparable in accuracy to AdaBoost, but more robust to errors and outliers.
• Insensitive to the number of attributes selected for consideration at each split, and faster

than bagging or boosting.
5Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. DOI: 10.1006/jcss.1997.1504.

[Online]. Available: https://doi.org/10.1006/jcss.1997.1504, Algorithm AdaBoost.M1 on p. 131.
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Classification of Class-imbalanced Data Sets

Class-Imbalanced Data
Class-Imbalanced Data refers to data where the main class of interest (positive labeled) is only
represented by a small number of tuples. E.g., medical diagnosis and fraud detection.

• Problem because traditional methods assume equality between classes,
i. e. a balanced distribution of classes and equal error costs.

• Typical methods for imbalanced data in binary classification:
1. Undersampling/Oversampling: Changes distribution of tuples in training data.

• Undersampling: Randomly eliminate tuples from negative class.
• Oversampling: Re-samples data from positive class.

For instance, method SMOTE generates synthetic data that is similar to existing data using nearest neighbor.

2. Threshold-moving: Moves the decision threshold, t , so that the rare-class tuples are easier to classify,
and hence, less chance of costly false-negative errors. Works when class returns a probability.

3. Ensemble techniques.

Threshold-moving and ensemble methods work well on extremely imbalanced data.
• Still difficult on multi-class tasks.

7L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. DOI: 10.1023/A:1010933404324. [Online]. Available: https://doi.org/10.1023/A:1010933404324.
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Summary



Summary

• Classification.
• A form of data analysis that extracts models describing important data classes.

• Effective and scalable methods developed for:
• Decision-tree induction, naive Bayesian classification, rule-based classification, and many other

classification methods.
• Evaluation metrics:

• Accuracy, sensitivity, specificity, precision, recall, F -measure, and Fβ -measure.
• Stratified k -fold cross-validation.

• Recommended for accuracy estimation.
• Significance tests and ROC curves.

• Useful for model selection.
• Ensemble methods and class-imbalanced data

• Boosting, Bagging (AdaBoost), and Random Forests.
• Methods to mitigate class-imbalanced problem for binary classification.
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Any questions about this chapter?

Ask them now or ask them later in our forum:

� https://www.studon.fau.de/studon/goto.php?target=lcode_OLYeD79h
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Basic Decision Tree Algorithm

Data:
• Training dataset D containing tuples with their associated class

labels;
• attribute_list, the set of candidate attributes;
• attribute_selection_method, a method to determine the

splitting criterion that “best” partitions the data tuples into
individual classes. The criterion consists of a
splitting_attribute, and possibly, either a split_point or
splitting_subset.

Result: A decision tree.

1 create a node N;
2 if tuples in D are all of the same class C then
3 return N as a leaf node labeled with the class C;

4 if attribute_list is empty then
/* Majority voting */

5 majority_class← determine majority class in D;
6 return N as a leaf node labeled with majority_class;

/* apply attribute_selection_method to find the

“best” splitting_criterion */

7 splitting_criterion← attribute_selection_method(D,
attribute_list);

8 label node N with splitting_criterion;
9 if (splitting_attribute is discrete-valued and multiway splits

allowed) or attribute value has only one unique value then
// remove splitting_attribute

10 attribute_list← attribute_list - splitting_attribute;

11 foreach outcome j of splitting_criterion do
/* partition the tuples and grow subtrees for

each partition */
12 Dj ← partition D to satisfy outcome j ;
13 if Dj is empty then
14 attach a leaf labeled with the majority class in D to node N;

15 else
16 attach the node return by build_decision_tree(Dj ,

attribute_list) to node N;

17 return N;

Algorithm 1: build_decision_tree. Generate a decision tree from training tuples in data partition D.
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