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About this Exercise Sheet

This exercise sheet focuses on the content of lecture 7. Classification.

It includes both theoretical exercises on Decision Trees (Exercise 1) and Naïve Bayes (Exercise
2) and a practical data science exercise (Exercise 3).

The exercise sheet is designed for a three-week period, during which the tasks can be completed
flexibly (Planned is one exercise per week).

The sample solution will be published after the three weeks have elapsed.

Preparation

Before participating in the exercise, you must prepare the following:

1. Install Python and pip on your computer

• Detailed instructions can be found in 1-Introduction-Python-Pandas.pdf.

2. Download provided additional files

• Download Additional-Files-Student.zip from StudOn

• Extract it to a folder of your choice.

3. Install required Python packages

• Open a terminal and navigate to the folder where you extracted the files.

• Run the command pip install -r requirements.txt within the extracted addi-
tional files folder to install the required Python packages.
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Exercise 1: Decision Trees

Given is a dataset D.

D is containing a continuous attribute (Age) and
two categorical attributes (Major and Partici-
pation) which can be used to predict the target
attribute Passed.

Age Major Participation Passed
23 CS High Yes
23 DS Low No
26 DS High Yes
24 DS Medium Yes
26 DS Medium No
26 DS Low No

Task 1: Information Gain

Use the algorithm for Decision Tree Induction known from the lecture to build a decision
tree for dataset D. The decision tree should be built using Information Gain as the attribute
selection method.

Write down all intermediate steps.

1. Create the root node:

To create the root node, we need to calculate the Information Gain for each attribute and
select the one with the highest Information Gain.

a) Calculate the Entropy of the target attribute Passed:

Info(D) = −
m∑

i=1
pi log2(pi)

= −pPassed=Yes log2(pPassed=Yes) − pPassed=No log2(pPassed=No)

= −3
6 log2

(3
6

)
− 3

6 log2

(3
6

)
= 1

b) Calculate the Information Gain for all attributes:

i. Attribute Age:

Age is a continuous attribute. To calculate the Information Gain, we need to find
the best split point.

A. Split point 23, 5:
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InfoAge(D) =
v∑

j=1

|DAge, j|
|DAge|

Info(DAAge, j
)

= |DAge≤2,5|
|DAge|

Info(DAge≤2,5) + |DAge>2,5|
|DAge|

Info(DAge>2,5)

= 2
6

(
−1

2 log2

(1
2

)
− 1

2 log2

(1
2

))
+ 4

6

(
−2

4 log2

(2
4

)
− 2

4 log2

(2
4

))
= 2

6 · 1 + 4
6 · 1

= 1
GainAge = Info(D) − InfoAge(D)

= 1 − 1
= 0

B. Split point 25, 0:

InfoAge(D) =
v∑

j=1

|DAge, j|
|DAge|

Info(DAAge, j
)

= |DAge≤5|
|DAge|

Info(DAge≤5) + |DAge>5|
|DAge|

Info(DAge>5)

= 3
6

(
−2

3 log2

(2
3

)
− 1

3 log2

(1
3

))
+ 3

6

(
−1

3 log2

(1
3

)
− 2

3 log2

(2
3

))
= 3

6 · 0, 9183 + 3
6 · 0, 9183

= 0, 9183
GainAge = Info(D) − InfoAge(D)

= 1 − 0, 9183
= 0, 0817

Therefore, the Information Gain for the attribute Age is 0, 817 (if we split at
25, 0).

ii. Attribute Major:

Major is a categorical attribute with two possible values: CS and DS.

Since it is a categorical attribute and we are using the Information Gain, there
is no need to determine a splitting criterion.
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InfoMajor(D) =
v∑

j=1

|DMajor, j|
|DMajor|

Info(DAMajor, j
)

= |DMajor=CS|
|DMajor|

Info(DMajor=CS) + |DMajor=DS|
|DMajor|

Info(DMajor=DS)

= 1
6

(
−1

1 log2

(1
1

)
− 0

1 log2

(0
1

))
+ 5

6

(
−2

5 log2

(2
5

)
− 3

5 log2

(3
5

))
= 1

6 (−0 − 0 · undefined) + 5
6 (0, 9710) Hint: Multiplication by 0 always results in 0

= 1
6 (−0 − 0) + 5

6 (0, 9710)
= 0, 8090

GainMajor = Info(D) − InfoMajor(D)
= 1 − 0, 8090
= 0, 1910

iii. Attribute Participation:

Participation is a categorical attribute with three possible values: High, Medium
and Low.

Since it is a categorical attribute and we are using the Information Gain, there
is no need to determine a splitting criterion.

InfoParti.(D) =
v∑

j=1

|DParti., j|
|DParti.|

Info(DAParti., j
)

= |DParti.=High|
|DParti.|

Info(DParti.=High) + |DParti.=Medium|
|DParti.|

Info(DParti.=Medium)

+ |DParti.=Low|
|DParti.|

Info(DParti.=Low)

= 2
6

(
−2

2 log2

(2
2

)
− 0

2 log2

(0
2

))
+ 2

6

(
−1

2 log2

(1
2

)
− 1

2 log2

(1
2

))
+ 2

6

(
−0

2 log2

(0
2

)
− 2

2 log2

(2
2

))
= 2

6 · 0 + 2
6 · 1 + 2

6 · 0
= 0, 3333

GainParti. = Info(D) − InfoParti.(D)
= 1 − 0, 3333
= 0, 6667

c) Create the node based on the highest Information Gain:

The attribute with the highest Information Gain is Participation with a value of
0, 6667. It will therefore become the splitting attribute for the root node.

The resulting tree will look like this:
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Participation?

Age Major Participation Passed
23 CS High Yes
26 DS High Yes

high

Age Major Participation Passed
24 DS Medium Yes
26 DS Medium No

medium
Age Major Participation Passed
23 DS Low No
26 DS Low No

low

2. Visit each branch:

a) Branch High:

All samples in the partial dataset of the branch High have the same value for the
target attribute Passed. Therefore, the branch becomes a leaf node.

Participation?

Yes

high

Age Major Participation Passed
24 DS Medium Yes
26 DS Medium No

medium
Age Major Participation Passed
23 DS Low No
26 DS Low No

low

b) Branch Medium:

The partial dataset of the branch Medium contains samples with different values for
the target attribute Passed. Therefore, we need to create a new node.

i. Calculate the Entropy of the target attribute Passed:

Info(DParti=Medium) = −
m∑

i=1
pi log2(pi)

= −pPassed=Yes log2(pPassed=Yes) − pPassed=No log2(pPassed=No)

= −1
2 log2

(1
2

)
− 1

2 log2

(1
2

)
= 1

ii. Calculate the Information Gain for all attributes that are not yet a
node:
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A. Attribute Age:

Age is still a continuous attribute. However since there are only two different
values in the partial dataset, we only have one split point.

InfoAge(DParti=Medium) =
v∑

j=1

|DAge, j|
|DAge|

Info(DAAge, j
)

= |DAge≤25|
|DAge|

Info(DAge≤25) + |DAge>25|
|DAge|

Info(DAge>25)

= 1
2

(
−1

1 log2

(1
1

)
− 0

1 log2

(0
1

))
+ 1

2

(
−1

1 log2

(1
1

)
− 0

1 log2

(0
1

))
= 1

2 · 0 + 1
2 · 0

= 0
GainAge = Info(DParti=Medium) − InfoAge(DParti=Medium)

= 1 − 0
= 1

B. Attribute Major:

Major is still a categorical attribute. This time we only have one value in
the partial dataset. Therefore, the Information Gain is 0:

InfoMajor(DParti=Medium) =
v∑

j=1

|DMajor, j|
|DMajor|

Info(DAMajor, j
)

= |DMajor=DS|
|DMajor|

Info(DMajor=DS)

= 2
2

(
−1

2 log2

(1
2

)
− 1

2 log2

(1
2

))
= 2

2 (1)
= 1

GainMajor = Info(DParti=Medium) − InfoMajor(DParti=Medium)
= 1 − 1
= 0

iii. Create the node based on the highest Information Gain:

The attribute with the highest Information Gain is Age with a value of 1. It will
therefore become the splitting attribute for the node.

The resulting tree will look like this:
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Participation?

Yes

high

Age?

medium
Age Major Participation Passed
23 DS Low No
26 DS Low No

low

Yes No

≤ 25 > 25

c) Branch Low:

All samples in the partial dataset of the branch Low have the same value for the
target attribute Passed. Therefore, the branch becomes a leaf node.

Participation?

Yes

high

Age?

medium

No

low

Yes No
≤ 25 > 25

3. Stop the algorithm:

Since all branches are now leaf nodes, the algorithm can be stopped.

The final decision tree is:

Participation?

Yes

high

Age?

medium

No

low

Yes No
≤ 25 > 25
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Task 2: Gini Index

This time, the decision tree for dataset D should be built using the Gini Index as the attribute
selection method.

Task 2.a: Root Node

Using the algorithm for building a decision tree with the Gini Index, create the root node of the
decision tree for the dataset D.

Write down all intermediate steps up to (and including) the point where the root node is
created.

1. Create the root node:

To create the root node, we need to calculate the Gini Index for each attribute and select
the one with the lowest Gini Index.

a) Calculate the impurity of the whole Dataset D:

Gini(D) = 1 −
m∑

i=1
p2

i

= 1 − p2
Passed=Yes − p2

Passed=No

= 1 −
(3

6

)2
−
(3

6

)2

= 0, 5

b) Calculate the Gini Index for all attributes:

i. Attribute Age:

Age is a continuous attribute. Similar to the Information Gain, we need to find
the best split point.

A. Split point 23, 5:

GiniAge(D) = |DAge≤23,5|
|DAge|

Gini(DAge≤23,5) + |DAge>23,5|
|DAge|

Gini(DAge>23,5)

= 2
6

(
1 −

(1
2

)2
−
(1

2

)2
)

+ 4
6

(
1 −

(2
4

)2
−
(2

4

)2
)

= 2
6 · 0, 5 + 4

6 · 0, 5
= 0, 5

∆GiniAge(D) = Gini(D) − GiniAge(D)
= 0, 5 − 0, 5
= 0
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B. Split point 25, 0:

GiniAge(D) = |DAge≤25,0|
|DAge|

Gini(DAge≤25,0) + |DAge>25,0|
|DAge|

Gini(DAge>25,0)

= 3
6

(
1 −

(2
3

)2
−
(1

3

)2
)

+ 3
6

(
1 −

(1
3

)2
−
(2

3

)2
)

= 3
6 · 0, 4444 + 3

6 · 0, 4444
= 0, 4444

∆GiniAge(D) = Gini(D) − GiniAge(D)
= 0, 5 − 0, 4444
= 0, 0556

The best split point is 25, 0 since its Gini Index is the lowest (0, 4444) and there-
fore the reduction of impurity (0, 0556) is the highest.

ii. Attribute Major:

Major is a categorical attribute with two possible values: CS and DS.

Gini Index only supports two-way splits. Therefore if we would have had more
than two values, we would have needed to calculate the Gini Index for each
possible split.

However since we only have two values, we can directly calculate the Gini Index
for the attribute Major :

GiniMajor(D) = |DMajor=CS|
|DMajor|

Gini(DMajor=CS) + |DMajor=DS|
|DMajor|

Gini(DMajor=DS)

= 1
6

(
1 −

(1
1

)2
−
(0

1

)2
)

+ 5
6

(
1 −

(2
5

)2
−
(3

5

)2
)

= 1
6 · 0 + 5

6 · 0, 48

= 0, 4
∆GiniMajor(D) = Gini(D) − GiniMajor(D)

= 0, 5 − 0, 4
= 0, 1

iii. Attribute Participation:

Participation is a categorical attribute with three possible values: High, Medium
and Low.

Since we have more than two different attributes, we have to calculate the Gini
Index for each possible attribute combination.
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A. Combination {High, Medium} and {Low}:

GiniParti.(D) = |DParti.=High, Medium|
|DParti.|

Gini(DMajor=High, Medium) + |DParti.=Low|
|DParti.|

Gini(DParti.=Low)

= 4
6

(
1 −

(3
4

)2
−
(1

4

)2
)

+ 2
6

(
1 −

(0
2

)2
−
(2

2

)2
)

= 4
6 · 0, 375 + 2

6 · 0

= 0, 25
∆GiniParti.(D) = Gini(D) − GiniParti.(D)

= 0, 5 − 0, 25
= 0, 25

B. Combination {High, Low} and {Medium}:

GiniParti.(D) = |DParti.=High, Low|
|DParti.|

Gini(DMajor=High, Low) + |DParti.=Medium|
|DParti.|

Gini(DParti.=Medium)

= 4
6

(
1 −

(2
4

)2
−
(2

4

)2
)

+ 2
6

(
1 −

(1
2

)2
−
(1

2

)2
)

= 4
6 · 0, 5 + 2

6 · 0, 5

= 0, 5
∆GiniParti.(D) = Gini(D) − GiniParti.(D)

= 0, 5 − 0, 5
= 0

C. Combination {Medium, Low} and {High}:

GiniParti.(D) = |DParti.=Medium, Low|
|DParti.|

Gini(DMajor=Medium, Low) + |DParti.=High|
|DParti.|

Gini(DParti.=High)

= 4
6

(
1 −

(1
4

)2
−
(3

4

)2
)

+ 2
6

(
1 −

(2
2

)2
−
(0

2

)2
)

= 4
6 · 0, 375 + 2

6 · 0

= 0, 25
∆GiniParti.(D) = Gini(D) − GiniParti.(D)

= 0, 5 − 0, 25
= 0, 25

The best combinations are {High, Medium} and {Low} and {Medium, Low} and
{High} since their Gini Index is the lowest (0, 25) and therefore the reduction of
impurity (0, 25) is the highest.
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We can choose either of them as the combination „representing“ the attribute
Participation. For the simplicity of this sample solution, we will choose the
combination {High, Medium} and {Low}.

c) Create the root node based on the lowest Gini Index:

The attribute with the lowest Gini Index is Participation with a value of 0, 25. It will
therefore become the splitting attribute for the root node.

The resulting tree will look like this:

Participation?

Age Major Participation Passed
23 CS High Yes
26 DS High Yes
24 DS Medium Yes
26 DS Medium No

high, medium

Age Major Participation Passed
23 DS Low No
26 DS Low No

low

Since the table for the branch Low only contains tuples with the class label No, we
can already create a leaf node for this branch:

Participation?

Age Major Participation Passed
23 CS High Yes
26 DS High Yes
24 DS Medium Yes
26 DS Medium No

high, medium

No

low

Task 2.b: Splitting attribute candidates

In the resulting tree from Task 2.a, one of the branches is already a leaf node.

Which of the attributes Age, Major and Participation have to be checked for their Gini index
in the next step necessary to further split the remaining branch?

• Attribute Age:

The attribute Age should be checked for its Gini Index in the branch High, Medium since
it still contains different values.
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• Attribute Major:

The attribute Major should be checked for its Gini Index in the branch High, Medium
since it still contains different values.

• Attribute Participation:

Contrary to the procedure for Information Gain - where the attribute Participation would
not be checked again - we also have to check the attribute Participation for its Gini Index
in the branch High, Medium since it still contains different values.

This is due to the fact that the Gini Index does not support multi-way splits. Therefore a
categorical attribute with more than two values can be splitting attribute multiple times
in the same branch.

Task 3: Gain Ratio

The Gain Ratio is a solution to a problem of the Information Gain.

Come up with an example dataset showing the problem of the Information Gain and explain
how the Gain Ratio solves this problem.

The problem of the Information Gain is that it tends to favor attributes with a large number of
values.

If we for example take a look at the following dataset D:

Major Participation Passed
CS High Yes
DS Low No
IIS High Yes
AI Medium Yes

ICT Medium No
CME Low No

We can see that the attribute Major only contains unique values.

Therefore, the Information Gain for the attribute Major would be 1:
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Info(D) = −
m∑

i=1
pi log2(pi)

= −pPassed=Yes log2(pPassed=Yes) − pPassed=No log2(pPassed=No)

= −3
6 log2

(3
6

)
− 3

6 log2

(3
6

)
= 1

InfoMajor(D) =
v∑

j=1

|DMajor, j|
|DMajor|

Info(DAMajor, j
)

= 1
6

(
−1

1 log2

(1
1

))
+ 1

6

(
−1

1 log2

(1
1

))
+ 1

6

(
−1

1 log2

(1
1

))
+ 1

6

(
−1

1 log2

(1
1

))
+ 1

6

(
−1

1 log2

(1
1

))
+ 1

6

(
−1

1 log2

(1
1

))
= 0

GainMajor = Info(D) − InfoMajor(D)
= 1 − 0
= 1

On the other hand the attribute Participation still (see Task 1) has an Information Gain of
0, 6667:

InfoParti.(D) =
v∑

j=1

|DParti., j|
|DParti.|

Info(DAParti., j
)

= |DParti.=High|
|DParti.|

Info(DParti.=High) + |DParti.=Medium|
|DParti.|

Info(DParti.=Medium)

+ |DParti.=Low|
|DParti.|

Info(DParti.=Low)

= 2
6

(
−2

2 log2

(2
2

)
− 0

2 log2

(0
2

))
+ 2

6

(
−1

2 log2

(1
2

)
− 1

2 log2

(1
2

))
+ 2

6

(
−0

2 log2

(0
2

)
− 2

2 log2

(2
2

))
= 2

6 · 0 + 2
6 · 1 + 2

6 · 0
= 0, 3333

GainParti. = Info(D) − InfoParti.(D)
= 1 − 0, 3333
= 0, 6667

With the Information Gain, we would choose the attribute Major as the splitting attribute since
it has a higher Information Gain than the attribute Participation.

However, since the attribute Major only contains unique values, it is not a good splitting at-
tribute, since we on the one hand up end up with a big multi-way split and on the other hand
risk to overfit our decision tree on the training data.
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The Gain Ratio solves this problem by normalizing the Information Gain with the Split Infor-
mation:

SplitInfoA(D) = −
v∑

j=1

|DA, j|
|D|

log2

( |DA, j|
|D|

)

GainRatioA = GainA

SplitInfoA(D)

If we apply the Gain Ratio to the Gain of the attributes Major and Participation, we get:

SplitInfoMajor(D) = −1
6 log2

(1
6

)
− 1

6 log2

(1
6

)
− 1

6 log2

(1
6

)
− 1

6 log2

(1
6

)
− 1

6 log2

(1
6

)
− 1

6 log2

(1
6

)
= 2, 5850

GainRatioMajor = 1
2, 5850

= 0, 3868

SplitInfoParti.(D) = −2
6 log2

(2
6

)
− 2

6 log2

(2
6

)
− 2

6 log2

(2
6

)
= 1, 5849

GainRatioParti. = 0, 6667
1, 5849

= 0, 4207

With the Gain Ratio, we would now choose the attribute Participation as the splitting attribute
since it has a higher Gain Ratio than the attribute Major.

We therefore avoid the problem of the Information Gain to favor attributes with a large number
of values.

Note: The Gain Ratio has its own problems, as it becomes unstable if SplitInfo is close to zero.
In this case, the Gain Ratio can become very high. Therefore, the Gain Ratio should also be
used with caution.
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Exercise 2: Naïve Bayes

Given is a dataset D.

It can be assumed that Topic,
Knowledge and Hours are condition-
ally independent of each other.

The attributes Topic and Knowledge
are categorical attributes.
The attribute Hours is a continu-
ous attribute. It can be assumed
that the values of this attribute are
distributed according to a Gaussian
distribution.

Topic Knowledge Hours Passed
Classification High 1,0 No

Clustering Low 4,0 No
Frequent Patterns High 5,0 Yes

Clustering Medium 5,0 Yes
Frequent Patterns High 2,0 No
Frequent Patterns Medium 3,0 Yes

Classification Low 6,0 Yes
Clustering Low 5,0 Yes
Clustering High 3,0 Yes

Classification Medium 4,0 Yes

Task 1: Classification

Use the dataset D and the Naïve Bayes algorithm to classify the following tuples:

Topic Knowledge Hours Passed
Clustering Medium 4,0 ?

Classification High 3,0 ?
Frequent Patterns Low 6,8 ?

Write down all intermediate steps.

1. Calculate the prior probabilities:

P (Passed = "Yes") = 7
10 = 0, 7

P (Passed = "No") = 3
10 = 0, 3

2. Calculate the likelihoods:
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a) Attribute Topic:

P (Topic = "Clustering"|Passed = "Yes") = 3
7 ≈ 0, 4286

P (Topic = "Clustering"|Passed = "No") = 1
3 ≈ 0, 3333

P (Topic = "Classification"|Passed = "Yes") = 2
7 ≈ 0, 2857

P (Topic = "Classification"|Passed = "No") = 1
3 ≈ 0, 3333

P (Topic = "Frequent Patterns"|Passed = "Yes") = 2
7 ≈ 0, 2857

P (Topic = "Frequent Patterns"|Passed = "No") = 1
3 ≈ 0, 3333

b) Attribute Knowledge:

P (Knowledge = "High"|Passed = "Yes") = 2
7 ≈ 0, 2857

P (Knowledge = "High"|Passed = "No") = 2
3 ≈ 0, 6667

P (Knowledge = "Medium"|Passed = "Yes") = 3
7 ≈ 0, 4286

P (Knowledge = "Medium"|Passed = "No") = 0
3 ≈ 0

P (Knowledge = "Low"|Passed = "Yes") = 2
7 ≈ 0, 2857

P (Knowledge = "Low"|Passed = "No") = 1
3 ≈ 0, 3333

c) Attribute Hours:

Since the attribute Hours is continuous and follows a Gaussian distribution, we have
to calculate the mean µ and the standard deviation σ for each class label:

µPassed="Yes" = 5 + 5 + 3 + 6 + 5 + 3 + 4
7 = 31

7 ≈ 4, 4286

σPassed="Yes" =

√
(5 − 31

7 )2 · 3 + (3 − 31
7 )2 · 2 + (6 − 31

7 )2 + (4 − 31
7 )2

7 − 1 ≈ 1, 1339

µPassed="No" = 1 + 4 + 2
3 = 7

3 ≈ 2, 3333

σPassed="No" =

√
(1 − 7

3)2 + (4 − 7
3)2 + (2 − 7

3)2

3 − 1 ≈ 1, 5275
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We can now calculate the likelihoods for the attribute Hours:

P (Hours = "4"|Passed = "Yes") ≈ 1√
2π · 1, 1339

· e
− (4−4,4286)2

2·1,13392 ≈ 0, 3276

P (Hours = "4"|Passed = "No") ≈ 1√
2π · 1, 5275

· e
− (4−2,3333)2

2·1,52752 ≈ 0, 1440

P (Hours = "3"|Passed = "Yes") ≈ 1√
2π · 1, 1339

· e
− (3−4,4286)2

2·1,13392 ≈ 0, 1591

P (Hours = "3"|Passed = "No") ≈ 1√
2π · 1, 5275

· e
− (3−2,3333)2

2·1,52752 ≈ 0, 2374

P (Hours = "6,8"|Passed = "Yes") ≈ 1√
2π · 1, 1339

· e
− (6,8−4,4286)2

2·1,13392 ≈ 0, 0395

P (Hours = "6,8"|Passed = "No") ≈ 1√
2π · 1, 5275

· e
− (6,8−2,3333)2

2·1,52752 ≈ 0, 0036

3. Calculate the likelihood of each tuple:

a) Tuple T1 with Clustering, Medium, 4 :

P (T1|Passed = "Yes") = P (Topic = "Clustering"|Passed = "Yes")
· P (Knowledge = "Medium"|Passed = "Yes")
· P (Hours = "4"|Passed = "Yes")
≈ 0, 4286 · 0, 4286 · 0, 3276
≈ 0, 0602

P (T1|Passed = "No") = P (Topic = "Clustering"|Passed = "No")
· P (Knowledge = "Medium"|Passed = "No")
· P (Hours = "4"|Passed = "No")
≈ 0, 3333 · 0 · 0, 1440
≈ 0
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b) Tuple T2 with Classification, High, 3 :

P (T2|Passed = "Yes") = P (Topic = "Classification"|Passed = "Yes")
· P (Knowledge = "High"|Passed = "Yes")
· P (Hours = "3"|Passed = "Yes")
≈ 0, 2857 · 0, 2857 · 0, 1591
≈ 0, 0130

P (T2|Passed = "No") = P (Topic = "Classification"|Passed = "No")
· P (Knowledge = "High"|Passed = "No")
· P (Hours = "3"|Passed = "No")
≈ 0, 3333 · 0, 6667 · 0, 2374
≈ 0, 0528

c) Tuple T3 with Frequent Patterns, Low, 6.8 :

P (T3|Passed = "Yes") = P (Topic = "Frequent Patterns"|Passed = "Yes")
· P (Knowledge = "Low"|Passed = "Yes")
· P (Hours = "6.8"|Passed = "Yes")
≈ 0, 2857 · 0, 2857 · 0, 0395
≈ 0, 0032

P (T3|Passed = "No") = P (Topic = "Frequent Patterns"|Passed = "No")
· P (Knowledge = "Low"|Passed = "No")
· P (Hours = "6.8"|Passed = "No")
≈ 0, 3333 · 0, 3333 · 0, 0036
≈ 0, 0004

4. Determine the highest posteriori probability for each tuple:

The posteriori probability according to Bayes’ theorem is actually calculated as follows:

P (Ci|X) = P (X|Ci)P (Ci)
P (X) .

Where Ci stands for the class to be predicted and X is representing a specific tuple (resp.
the attribute combination that is part of that tuple).

However, since P (X) is the same for all classes, it is sufficient to calculate only the nu-
merators to determine the highest P (Ci|X).

Being able to determine the highest P (Ci|X) (even without knowing its exact value) is
sufficient to classify the tuple.
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a) Tuple T1 with Clustering, Medium, 4 :

Calculate the numerator of P (Passed = "Yes"|T1) and P (Passed = "No"|T1):

P (T1|Passed = "Yes") · P (Passed = "Yes") ≈ 0, 0602 · 0, 7 ≈ 0, 0421
P (T1|Passed = "No") · P (Passed = "No") = 0 · 0, 3 = 0

Since 0, 0421 > 0 and we classify the tuple T1 as Passed = "Yes".

Calculation of the posteriori probability:

Even if the calculation of the full posteriori probability is not necessary, it is still
possible to calculate it.

We first need to calculate the denominator of the posteriori probability P (X):

P (T1) = P (T1|Passed = "Yes") · P (Passed = "Yes")
+ P (T1|Passed = "No") · P (Passed = "No")
≈ 0, 0602 · 0, 7 + 0 · 0, 3
≈ 0, 0421

Which can then be used to calculate the posteriori probabilities:

P (Passed = "Yes"|T1) = P (T1|Passed = "Yes") · P (Passed = "Yes")
P (T1)

= 0, 0421
0, 0421

= 1

P (Passed = "No"|T1) = P (T1|Passed = "No") · P (Passed = "No")
P (T1)

= 0
0, 0421

= 0

As this calculation is not necessary for the classification, we will not calculate
the posteriori probabilities for the other tuples.
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b) Tuple T2 with Classification, High, 3 :

Calculate the numerator of P (Passed = "Yes"|T2) and P (Passed = "No"|T2):

P (T2|Passed = "Yes") · P (Passed = "Yes") ≈ 0, 0130 · 0, 7 ≈ 0, 0091
P (T2|Passed = "No") · P (Passed = "No") ≈ 0, 0528 · 0, 3 ≈ 0, 0158

Since 0, 0091 < 0, 0158 we classify the tuple T2 as Passed = "No".

c) Tuple T3 with Frequent Patterns, Low, 6.8 :

Calculate the numerator of P (Passed = "Yes"|T3) and P (Passed = "No"|T3):

P (T3|Passed = "Yes") · P (Passed = "Yes") ≈ 0, 0032 · 0, 7 ≈ 0, 0022
P (T3|Passed = "No") · P (Passed = "No") ≈ 0, 0004 · 0, 3 ≈ 0, 0001

Since 0, 0022 > 0, 0001 we classify the tuple T3 as Passed = "Yes".

Task 2: Model Evaluation

The classifier was also trained on a version of dataset D with more tuples:

The dataset T contains both the true and the predicted "Passed"-Status for each test tuple.

Topic Knowledge Hours Passed
(True)

Passed
(Pred)

Classification Medium 7,5 Yes Yes
Frequent Patterns Low 1,8 No No
Frequent Patterns High 3,7 No Yes
Frequent Patterns Low 0,2 No No
Frequent Patterns High 1,4 Yes No
Frequent Patterns High 9,9 Yes Yes
Frequent Patterns Medium 7,3 Yes Yes
Frequent Patterns Low 4,3 No Yes

Classification Medium 5,5 Yes Yes
Clustering Low 0,1 No No

Use the dataset T to calculate the sensitivity, specificity, accuracy, precision, recall, and
F1-score of the model.

Also state the best possible value for each metric.

We need to calculate the True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) for the model evaluation.

This is often done by creating a confusion matrix:
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Predicted
Y es No Total

True Y es 4 (TP) 1 (FN) 5 (P)
No 2 (FP) 3 (TN) 5 (N)

Total 6 (P’) 4 (N’) 10 (P + N)

This confusion matrix can be used to calculate the metrics:

• Sensitivity:

Sensitivity = TP

P
= 4

5 = 0, 8

Best possible value: 1

• Specificity:

Specificity = TN

N
= 3

5 = 0, 6

Best possible value: 1

• Accuracy:

Accuracy = TP + TN

P + N
= 4 + 3

5 + 5 = 7
10 = 0, 7

Best possible value: 1

• Precision:

Precision = TP

TP + FP
= 4

4 + 2 = 4
6 = 0, 6667

Best possible value: 1

• Recall:

Recall = TP

TP + FN
= TP

P
= Sensitivity = 0, 8

Best possible value: 1

• F1-Score:

F1-Score = 2 · Precision · Recall
Precision + Recall = 2 · 0, 6667 · 0, 8

0, 6667 + 0, 8 = 0, 7273

Best possible value: 1

Of course, the question regarding the best possible value is a trick question. The best possible
value for each metric is 1 (or 100%), as this would mean 100% of the tuples were classified
correctly.
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Exercise 3: Conducting Classification

This exercise comprises practical data science tasks and thus utilizes a Jupyter Notebook:

1. Open Conducting-Classification.ipynb.

2. Take a look at the tasks (blue boxes) in the notebook and try to solve them.

If you are unfamiliar with how to open a Jupyter Notebook, please refer to Exercise 1 of
1-Introduction-Python-Pandas.pdf.

The solution to the exercise can be found in Additional-Files-Solution.zip.
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